Homework 2, CPSC 421/501, 2025

(0) Joel Friedman

(1) 9.2.8

(a)
$$f(A) = \emptyset$$
, and

 $f(C) = \{A,B,C\} = P$

(b) Since $A \notin f(A)$, $A \in T$

Since $C \in f(C)$, $C \notin T$

We know $T \notin f(A)$, since $A \notin f(A)$

but $A \in T$. We know $T \notin f(C)$ since

 $C \in f(C)$ Lut $C \notin T$.

(c) Now we know $f(B) = \{A,C\}$, and

have $B \notin f(B)$ so $B \in T$.

Since $C \notin T$ and $A,B \in T$, we have

 $T = \{A,B\}$.

(2)
$$9.4.1 (a)$$

if $(i,j) \in \mathbb{N}^2$ and $i+j \leq 2$,

then $(i,j) = (1,1)$;

if $(i,j) \in \mathbb{N}^2$ and $i+j = 3$,

then $(i,j) = (1,2)$ or $(2,1)$

Similarly,

if $(i,j) \in \mathbb{N}^2$ and $i+j = k$ for

Some $k = 2,3,4,...$ then

(i,j) is one of finitely many

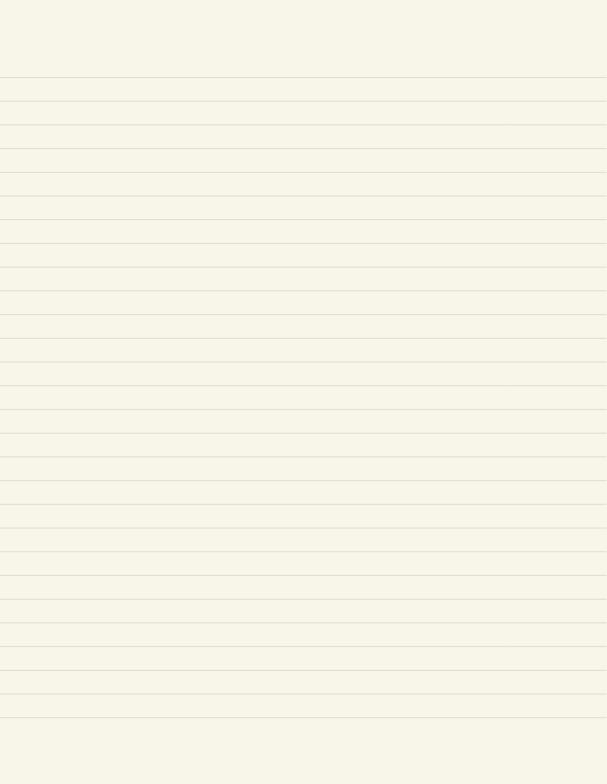
values, namely

(1, k-1) or $(2,k-2)$ or --- or $(k-1,1)$

Hence, for each k = 2,3,4, --there are only finitely many (i,j) E M2 such that itj=k. And, of course each (i,j) EIN2

does satisfy itj=k for some k=2,3,--) Hence we can write a list of all elements of M2, namely (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), iej = 4 i+j=2 i+j=3

Hence M2 is in bijection with M.



Note: There are many equivalent ways of writing this; for example, one can write M×N as a table (1,1) (1,2) (1,3) ---(2,1) (2,2) (2,3) ---(3,1) (3,2) (3,3) ... Then the solution above is just like the proof that 12 is countable.] (b) [Again, there are a number of ways of solving this problem. For each 1=3,4,5,... there are only finitely many triples (i,j,k) such that itj+k=l. Hence we can list all triples in order of itisk, e.g. 1+j+k=3: (, , ,) i+j+k=4: (1,1,2),(1,2,1),(2,1,1) i+j+k=5,6, ... etc. (Question for your anusement! how many triples do you get s.t. itj+k=l, as a function of 2?)

(C) There are many ways to do this ... Here's one? to each (n, nz, --, nk) & lyk, say the "rank" of (n,,...,nk) is n, + nz+ -- + nk . Then (1) each element of IN* has finite "rank", and (Z) for each r=0,1,2, --- there are only finitely many elements of IN of "rank" equal to r: indeed,

rank (n,,--,,nk)=r implies a K & T (since each element of W={1,2,--.} has value ≥ 1), and (b) each n; has 1 & n; & r. In view of a, b, we have $rank(n_1,...,n_k) \leq r implées$ (n,,..,nk) lies in $S_r = [r]^o \cup [r]^o \cup [r]^o$, where [r]={1,2,--, r], so Sr is finite. Hence we can list the elements of IN to by their rank, listing them

the elements ,, 5, 11 52 giving a list li, lz, lz, ly, --s,t. each element of IN* is found Somewhere on the list. Hence this gues a surjection IN -> IN* (namely in) Hence Mis countable.

(3) The bonus question: (this solution is not as complete as for a non-bonus question).

(a) There is a bijection between

[2] IN and Power (IN) which takes

(a,,a,a,a,a,...) (hence a; \(\ext{\ell}_{1,2} \) for

 $\{n \in |N| | a_n = 2\}$

(or an=1 if you prefer).

Hence (2) IN is uncountable, since Power (IN) is (by Cantor's theorem) (b) Idea? group the sequence $(a_1,a_2,a_3,a_4,--)$ into groups of 2 bits; a, a, a, a, a, a, a, --and map ا وسر الم (or something 12 - 2 Similar ...) 21 -3 22 - 4 to get a bijection; e.g. 111222211112---(m m m m 11,12,22,21,11,12,---I I I I I 124312 etc.

(C) Similarly group the bits (binary digits) into groups of size 3. (d) Reverse the bijection [z] ~ (4) N our apply the bijection [2] IN _ [8] IN (hence each group of 3 elements of [4] is mapped to a group of 2 elements of (B)). (e) Take f: [8] - (7) with f(i)=i for i = 7, and fl8) arbitiary (Question: how many surjections [8] - [7] are there?) The map taking [flan,flaz),...)

(a,, a, a,, ---)

gives such a bijection (f) Similarly. (g) Compose the surjections $[7]^{\mathbb{N}} \rightarrow [2]^{\mathbb{N}}$ and $[2]^{\mathbb{N}} \rightarrow [\mathbb{F}]^{\mathbb{N}}$ (the second function is also a bijection, but any bijection is also a surjection). Not for credit: ?? You can set up a map [7] N - S [0,1] taking (a,az,--) to a,azaz--, viewed as a base 7 expansion, but you get collisions, e.g. .1666... = .20 in buse 7. So you could take out these countable many

collisions, and do the same for [8] [N (Q: What about a bijection [7] " -> [0,1] ?? These sets have the same cardinality, in any system of axioms where S and Sx {1,2} have the cardwelity for Sinfinite, such as ZFC.)

(4) (a) The set of i,j & M such that itj=l for l fixed is { (1, l-1), (2, l-2), --, (l-1, 1)} which has 1-1 elements. The number of pairs (i,j) with itj & l is 1+2+...+ l-1= (l) So if it j = a, there are (2) fractions i'/j' with i'tj' & a-1 that appear on the list strictly befor it; , and it; occurs at latest in position (9).

(b)
$$\binom{a-1}{2}$$
 fractions i'/j , occur with $i' + j' \le a-1$. Since we are ordering the factions on level a as

 $i'/a-1$, $i'/a-2$, $i'/a-2$, $i'/a-1$, is the $i'+1$ fraction on this list, and hence occurs as $i'/a-1$, $i'/$

(c) The relative density of reduced

fractions in the way we have listed them is well-know to be $\left(\left(-\frac{1}{2^{2}}\right)\left(\left(-\frac{1}{5^{2}}\right)\right)\left(\left(-\frac{1}{5^{2}}\right)\right)$ intuitively, (i,j) is reduced iff (1) i,j are not both drisible by 2, which occurs with probability 3:1-1, since both are divisible by 2 with AND probability 1/22 and these probabilities are "sufficiently close to being independent " so that the probability of

all there events holding is just the product,

Of course, this is not a proof. For hints as to how to get a rigorous proof, See Homework 1, page 7, Fall 2019 version of CPSC 421/501 (you can get to the Fall 2019 homepage from this year's homepage). This product is easily seen to be /7(2), where T(s)= Ins $= \sum_{\rho \text{ prime}} \left(\left| - \frac{1}{\rho s} \right| \right)$ and it is well known that

 $\int (2) = \frac{\pi^2}{6}$

Hence the relative density is $\frac{6}{11^2}$, which

is well-known to be irrational (even transcendental).

If we had

$$k = \alpha_1 + i\alpha_2 + j\alpha_3 + i^2 \alpha_4 + ij\alpha_5 + j^2 \alpha_6$$

with $\alpha_{1,--}, \alpha_6 \in \mathbb{Q}$, then the

fraction In world occur in position

however its true occumence is in position
$$\binom{n+1}{2} \left(\frac{6}{112} + o(1)\right) = h^2 \left(\frac{3}{112} + o_n(1)\right)$$

which cannot equal $n^2 \propto_6 + O(n)$.

On can take many variants of the faction

In above.