GODEL’S INCOMPLETENESS THEOREM VIA
UNDECIDABILITY OF THE HALTING PROBLEM

JOEL FRIEDMAN

CONTENTS

1. The Point of this Article: Gédel’s Incompleteness Theorem
1.1. Consequence of Lemma 1.1

1.2. Why We Like Section 6.2 of [Sip] Lemma 1.1

1.3. N and Enderton’s Textbook [End01]

1.4. Godel Numbers and the Proof of Lemma 1.1

1.5. The Proof of Lemma 1.5

2. Some Easy Phrases and One Difficult Phrase

O © O© 00O TTUTWwWwwwkH

3. Easy Observations Regarding Godel Numbers and Sentences
4. Some Surprising Sentences

5. The Construction of Some Surprising Sentences

6. The Ingenious Idea as a “For Loop,” and Its Consequences
7. Leftover

References

Copyright: Copyright Joel Friedman 2023. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

Disclaimer: The material may sketchy and/or contain errors, which I will elabo-
rate upon and/or correct in class. For those not in CPSC 421/501: use this material
at your own risk. ..

1. THE POINT OF THIS ARTICLE: GODEL’S INCOMPLETENESS THEOREM

Sipser’s textbook [Sip| explains the rough idea behind a proof of a weaker form
of Godel’s Incompleteness Theorem: namely, there exists a true but “unprovable”
statement in Th(N, +, x). Here a “statement” (also “sentence”) means a formula
(meaning a “well-formed formula”)! taking values in {T', F'} (T for true, F for false),
that is TQ (“totally quantified”), i.e., where all variables are quantified?.

Date: Tuesday 215¢ October, 2025, at 10:19.

Research supported in part by an NSERC grant.

1The notion of a WFF (well-formed formula) is discussed in Section 6.2 of [Sip], and is analogous
to what we mean by a Boolean formula, where instead the variables take values in N. For example
(z)) is not a WFF (well-formed formula), since it has more right parentheses than left.

2For example, in the formula Vy, (z + y = y), y is quantified, but = is not; by contrast,
Jz,Vy, (x + y = y) is TQ (totally quantified), and is true for N-valued variables provided that
N ={0,1,2,...}, which is the convention in this article; it would be false for N = {1,2,3,...}.

1

2 JOEL FRIEDMAN

Stronger forms of Gédel’s Incompleteness Theorems actually explicitly construct
such an “unprovable” statement; however, this depends on your method of “proving”
statements, i.e., the specific axioms you use and specific rules you have of using your
axioms to derive “proofs.”

Even though we will not address methods of “proving” statements in this article
(see why below), you should also be aware of some caveats to the last paragraph.
First, the axioms you use have to be enumerated by some Turing machine, so there
are either finitely many axioms or an infinite number that follow some pattern that
can be specified by an algorithm. [Otherwise, if you were allowed to use any true
statement in Th(N, 4, X) as an axiom, then you could trivially prove any theorem.]
Second, we assume that any statement you “prove” is actually a true statement in
Th(N, +, x).

One can compare this to the way we stated Cantor’s theorem: the weaker form
states that for every map of sets f: .S — Power(5), f is not surjective; our stronger
form says that T'= {s € S|s ¢ f(s)} is not in the image of f. Hence the stronger
form explicitly produces a set not in the image of f.

We warn the reader that [Sip] adopts a few conventions that are not standard:
[Sip| describes a statements to be a certain type of string (a WFF that is TQ) that
can be written with the symbols

{() AV~ Y, 32,4, %}

Most textbooks in logic have slightly different conventions. Although
(,),A,V,—,V,3 have their usual meaning,

(1) [Sip|] uses the strings z, zx, xaw, ... to allow for an arbitrary (but finite!)
number of variables when forming statements, and
(2) [Sip| uses +, x to denote operations N*> — {T, F'}, namely +(z, y, 2) is true
iff x + y = 2z, and similarly with x.
In this article we follow the more common meaning of +, X, i.e., as maps N> — N,
and we use additional symbols (<,=,<) as maps N> — {T, F} Also we write
our variables as x1,x9,x3,... which means that we add 0,...,9 to the alphabet
(similarly one can add ' to the alphabet and use the Varlables x, 2’).

The main theorem stated in [Sip], namely Theorem 6.13, is that Th(N +,X) is
undecidable, is due to Church, although largely based on ideas of Goédel, and, in
particular, one ingenious trick/method. The reason we like this theorem is that it
is perfectly precise. The proof of Theorem 6.13 of [Sip| relies on Lemma 6.14 there,
which we state as follows.

Lemma 1.1. For any Turing machine, M, and string w, there is a formula ¢z,
in the symbols

(1) {+,><,(,),/\,\/,_',<,V,E|,$1,I2,.-.}

(x1,x2,...,2, are called variables) that contains a single free variable, x1 (i.e.,
there is no ¥ or 3 applied to x1, but there is a ¥V or 3 applied to every other variable),
such that M accepts w iff the formula 3z1, dpr s true when our variables take
values in N (and +, x, < have their usual meaning, as described above).

As claimed in [Sip], the idea is that x; will represent an accepting configuration
of the Turing machine, M, on the input, w. However, beyond this, the proof of
the above lemma is beyond the scope of [Sip|. The point of this article is to briefly

GODEL’S INCOMPLETENESS THEOREM VIA UNDECIDABILITY OF THE HALTING PROBLEM

describe how ¢z, is constructed. In fact, once you get used to a few simple ideas,
there is only one (rather ingenious) trick/method.

1.1. Consequence of Lemma 1.1. Lemma 1.1 leads to the following theorem,
which is clear from Section 6.2 of [Sip].

Theorem 1.2. Let M be a Turing machine that recognizes some language, L, in
the symbols (1) such that every string in L is a WF (well-formed) and TQ (totally-
quatified) formula that is true in Th(N, +, x). Then there is a WF and TQ formula,
f, that is true in Th(N, 4+, X) such that f is not accepted by M.

Proof. Any WF and TQ formula, f, in the symbols (1) is either true or false in
Th(N, 4+, x). (You do have to prove this; you could do so by induction on the
number of variables; once you prove that all quantifiers can be moved to the left
of any ETC.) Hence for any such f, either f or —f is true. If M recognized all
true (WF and TQ) formulas, then Th(N,+, x) would be decidable, contracting
Lemma 1.1. (]

1.2. Why We Like Section 6.2 of [Sip] Lemma 1.1. Theorem 6.12 and
Lemma 6.13 of [Sip], and our Lemma 1.1 based on Section 6.2 of [Sip|, are a
terrific way to learn about incompleteness theorems because: (1) these statements
are completely precise in the context of CPSC 421/501, and (2) it proves a weak
form of incompleteness under the assumption that our definition of a “system of
axioms and derivation rules” (or related notions) leads to a way of recognizing true
statements with a Turing machine. Hence this serves as a clever intermediate point
for the incompleteness theorems. Hence Section 6.2 of [Sip] serves to “factor” the
proof of Gédel’s Incompleteness Theorems into two parts: the part that we discuss
in this article, and some extra reading (which requires a bunch of added technicali-
ties). Furthermore to prove the results in Section 6.2 of [Sip] and Lemma 1.1 here,
we need just a single clever idea.

1.3. N and Enderton’s Textbook [End01]. In this article we use N to denote
{0,1,2,...}, rather than the usual {1,2,...}. The main reason we do this is that this
convention seems to be used in books on logic, such as Enderton’s deservedly classic
textbook [End01] (this is the 2nd edition). In this article we follow Enderton’s
textbook (currently available online free of cost via the UBC library to the UBC
community).

We remark that CPSC 421/501 students (and instructors...) may be amazed at
how much overlap there is between CPSC 421/501 and Chapter 1 of Enderton’s
textbook [End01]. For example, there Enderton defines a language to be semidecid-
able, just after Theorem 17E of Chapter 1, page 63, to mean we call recognizable in
CPSC 421/501 and [Sip]. Chapter 1 of [End01] also discusses formulas and circuits.

1.4. G6del Numbers and the Proof of Lemma 1.1. Many students may have
heard of Gddel numbers. To define these, we denote the prime numbers with the
notation:

Po=2,p1 =3, p2=5p3=7, ...

For any finite sequence of natural numbers, ag, a1, ..., a, € N, we use

(2) (Ao, -y am)g = 27013l ptm

4 JOEL FRIEDMAN

(see Chapter 3, page 220 of [End01]). Hence ()¢ gives an injection N* — N (it is
not a surjection, since 3 = 2°3! is not in the image). There are, of course, minor
variations of our formula (2) for Godel numbers in the literature.

The general strategy to prove Lemma 1.1 is to express any finite number of

configurations of the Turing machine M on input w as a sequence ay, . .., Gy, of
finite length of some alphabet A, and to set
(3) x1 = (Ao, .., am)g = 2907130 plm L

The simplest way to do this, given our proof of the Cook-Levin Theorem, is
simply to take A = {T,F'} to use the Boolean variables {z;;y,¥i;, ziq} used in
CPSC 421/501 (or the {z;;,} of [Sip]), arranged as a sequence a1, ..., an, (hence if
the computation requires ¢ steps, we need m = O(t?)).3

Similarly to our proof of the Cook-Levin theorem, one now builds a sentence
that expresses that x; represents a valid computation of our Turing machine. In
other words, let Decode be any function N x N — N such that

4) Decode(2%0 130+t | pam®l by — g

(since 0 can never be a Goédel number, Decode is not uniquely defined). All we
need to do is build a sentence that checks that the values of Decode(x1,b) satisfy
the Turing machine constraints. This is completely analogous to our proof of the
Cook-Levin theorem; for a Turing machine computation that takes ¢ steps, we will
need to check O(t?) conditions between the values of Decode(z1, b) such that x; in
(3) represents the unique valid computation to ¢ steps. Hence we build a formula
Yarw,t SO that there is a computation accepting w within ¢ steps iff M accepts w in
t steps. Hence this is true iff 3z, 3¢, ¥ pr,:. Hence we take ¢as ¢ to be It, s ¢
This proves Lemma 1.1 provided that we can prove the following.

Lemma 1.3 (Godel). There exists a formula over (1) for a function N x N — N,
Decode(z,y), that satisfies (4).

Remark 1.4. To understand the lemma above, you need to understand how a
formula can give a function N — N. As an example, consider the successor function,
S: N — N given by S(z) = v+ 1. We have that S(z) = y iff z < y and there exists
no z with z < z and z < y. Hence, if x is any variable or expression, and we wish
to use S(x) in a formula, we can replace S(z) by the formula

(5) Vy((x<y)/\ (—\Hz((az<z)/\(z<y))))y

(we could also write Jy instead of Vy). Hence a function N — N is really equivalent
to expressing the phrase

(6) (z<y) A (B <2)A(z<p))

which is really a function N2 — {T, F'} taking (z,y) to T iff y = S(z). Of course,
(5) is obtained from (6) by adding Yy to the left (Jy would also work), and y to the
right (and adding parenthesis, for clarity). Hence a formula for a function N — N

3Alternatively7 if M = (Q,%,T,6,q0, qacc, Grej), one could take A = TUNUQ, and use a1, ..., am
to express the tape cell contents, the tape head locations, and the states we are in at each step
of the computation; this avoids the Boolean variables used in the Cook-Levin theorem, but it is
still true that if the computation takes t steps, then we still need m = O(t?), since for each step
we should keep track of the first ¢ tape cells.

GODEL’S INCOMPLETENESS THEOREM VIA UNDECIDABILITY OF THE HALTING PROBLEM

is equivalent to a formula for a function N x N — {7, F'}. Similarly for functions
N — N and functions N”* x N — {T', F'}. (This point is touched on in [Sip],
Example 6.11, page 254, where it is explained that the + in Th(N, +, x) is, in
[Sip], a relation N® — {T, F'} where +(a, b, c) (|Sip] also uses PLUS(a,b,c)) is the
function that is T iff a + b = ¢.)

This lemma is quite easy, except for one ingenious idea, needed to prove the
following lemma.

Lemma 1.5 (Gédel). There exists a formula over (1) for a function Prime: N — N
such that Prime(i) = p;, the i-th prime (with po = 2, p1 = 3, etc.)

1.5. The Proof of Lemma 1.5. We now divide the proof of Lemma 1.5 into two
parts. First, we will expand the alphabet (1) to the larger alphabet

(7) {+,%,(),\,V,7, =, .V, =<, <,0,S,E, 3, 21, x9,...,2,},

which includes some additional convenient symbols meaning:

(1) where —, +» have their usual logical meaning, i.e., p — ¢ is —=p V ¢ and
p<qis(p—q)A(qg—p)

(2) =,<, < have their usual meaning in N; e.g., f < g means —(g < f) and
f =g means (f < g)A (g <f)(we can similarly write =, <, < over N in
terms of any one of these three, e.g., f < g means 3z(z + f = g)),

(3) 0 is the symbol representing 0 € N, which over N can be written by writing
Vz,z 4+ 2z =z (or 32,z + z = z) at the beginning of the formula, and then
putting z in everywhere we want a 0;

(4) S is the successor function x — z + 1, e.g., SSz refer to x + 2; since y = Sz
is the unique element of N such that x < y and there exists no z with
z < z and z < y, we can write Sx where z is any variable or expression, by
writing Vy((z < y) A (-3z((z < 2) A (2 < y)), and putting y instead of Sz.
(Do you see why S is convenient?)

(5) E is the exponentiation function, zEy refers to V. It is not at all obvious
that we can express E in terms of any of string over (,), A, V,—,V, 3,4+, —, <
,=, <. To do so we will use a variant of the single ingenious trick.

We first prove:

Lemma 1.6. Lemma 1.5 holds when (1) is replaced with the larger alphabet in (7).

This uses some easy facts and one ingenious idea that we will apply a number
of times.

We will then use Lemma 1.5 using Lemma 1.6; the only non-trivial idea is how
to express E with the symbols in (1). This can be done with the same ingenious
idea as before.

The reader may want to think about how to prove Lemma 1.6, before reading
ahead.

2. SOME EASY PHRASES AND ONE DIFFICULT PHRASE

Let us take the symbols in (7), and write some phrases with them. It is quite
easy to figure out how to write them down in succession. In these phrases x denotes
either a variable or an expression.

(1) IsDivBy = IsDivBy(z, y) a function N?> — {T, F'} such that IsDivBy(z, y) =
T iff z divides y.

6 JOEL FRIEDMAN

(2) IsPrime = IsPrime(z), the function N — {7, F'}, which is true iff z is prime;

(3) NoPrimeBetween(z,y), a function N2> — {T, F'} that equals T iff there is
no prime number, z, with ¢ < z < y;

(4) NextPrime = NextPrime(z), the function N — N that returns the smallest
prime greater than x;

(5) PrimePower = PrimePower(z,y), the function N?> — {T', F'} that is true iff
2 is a prime and y is a power of z (we will want to do this without using
the symbol E);

(6) NextPrimePower = NextPrimePower(z,y), any function N> — N such that
if x is prime, the function returns the smallest power of = greater than y
(we will use PrimePower above, and again avoid using the symbol E).

We encourage the reader to construct these functions themself, before looking
over our constructions below. Once you get the idea for one, the rest are not
difficult.

(1) IsDivBy(z,y) can be written as Jz(x X z = y).
(2) IsPrime = IsPrime(z) can be written as

(x <2) A (Vz,2(1 < 2 < 2) V ~IsDiv(z,x))
where 1 < z < x is shorthand for (1 < 2)V(z <), and 1, 2 are, respectively,
shorthand for S0, SSO;
(3) NoPrimeBetween(x,y) is Vz, ~(x < z < y) V —IsPrime(z).
(4) NextPrime(x) is
vy (IsPrime(y) A NoPrimeBetween(z,y))y

LATER IN THE ARTICLE:
an extremely clever ideahighly non-trivial to produce; they can all be done using
essentially the same ingenious idea. Here we list a few.

(1) PrimeOfIndex: N — N given by PrimeOfIndex(z) = p,, where py = 2,p; =
(2) SumOf(x,y, f), the sum from x = 0 to z = y of an expression f: N - N
(which presumably con...

3. EASY OBSERVATIONS REGARDING GODEL NUMBERS AND SENTENCES

We now express some functions and constants in (N, +, X); these are not partic-
ularly surprising.

Our first constants and functions are implicit in [FEnd01], where one is allowed
to build senteces out of the symbols (see page 225 of Chapter 3, specifically Table
XTI there):

(1) Parameters: V,0,S,<,+, x,E which are symbols numbered 0,2,...,12;
and
(2) Logical symbols: (,),—,=,=,v1,v2,..., which are symbols numbered
1,3,5,7,...
Hence each symbol above is associated to a unique element of N. The meaning of
0, S, E are as follows: 0 refers to 0 € N; S is the successor function, i.e., Sz = x+1
(so S20 = SSO0 refers to 2 € N); and E is the exponentiation function, i.e. zEy
refers to x¥. The variables vy, v, ... are any (finite set of variables); we will often
use other letters (z,y,z,... or a,b,c,...) to denote these variables.

GODEL’S INCOMPLETENESS THEOREM VIA UNDECIDABILITY OF THE HALTING PROBLEM

The first task is to express the above in terms of (N, +, x), meaning sentences
with variables, and the symbols +, x, and the usual symbols of first-order logic, i.e.,
3, V, =, A, V,=,= and commas and parentheses. Of course, p = ¢ is equivalent to
—pVq, so that some of these symbols are redundant; moreover, it is often convenient
to use some other symbols, like <= (where p <= ¢ is equivalent to writing
(p=q)AN(g=p)or (pAq)V (—pA~—q). Let us describe some of the symbols

(1) The function a < b, viewed as a function N x N — {T', F'} (representing
true, false) can be expressed by

Je((a+c=b)A-(c+c=0c))

(here 3¢ means Jc € N; all quantifiers 3, V refer to variables that lie in N).
In other words, a < b means there exists a ¢ such that a + ¢ = b and c is
not 0 (equivalent to =(c+ ¢ = ¢)).

(2) the integer 0 can be expressed as the constant a,

Ja (a4 a = a),

hence one can place this in the beginning of any sententence to make a refer
to 0;
(3) the function S can be described by Sz refers to the unique y satisfying

Jy ((1: <Y A (—3z, (z<2)A (2 < y)))

Hence instead of Sz we write the above phrase, followed by substituting y
whenever we write Sz.

After doing this with all symbols, we introduce some not particularly surprising
phrases, such as

(1) The function IsDivBy(z,y) is the map Z? — {T, F} which is T iff 2 divdes
y; we can write IsDivBy(z,y) as
2 (0 < 2) A (2 X z=y);
(2) The function IsPrime(x) is the map Z — {7, F'} which is T iff is prime:
IsPrime(z) can be written as

-3y (S0 < y) A (y < x) AIsDivBy(y, x);

(3) The function NextPrime(z,y) is true if z < y are both prime, and there is
no prime bewteen z,y:

(x < y) AIsPrime(x) A IsPrime(y) A (—EI z,IsPrime(z) A (x < 2) A (2 < y))

4. SOME SURPRISING SENTENCES

Here are some sentences that I find surprising and extremely clever, beginning
in item 7., page 219, Chapter 3 of [End01]:

(1) One can express the function xEy by a phrase in (N,+, X); to do so
it suffices to give a phrase for the function f: Z®> — {T,F} such that
flx,y,z) =T iff z=2a¥, and then to write 3z, f(x,y, z), and put z wher-
ever you want to put zEy. But how can you express f(z,y,z) with only
+, x and the usual operations V,3, =, A,V of first-order logic??

8 JOEL FRIEDMAN

(2) One can express the function g: N — N such that g(a) = p,, i.e., the a-th
prime (counting from 2 = pg and 3 = p1). Again, it suffices to express the
function f: N2 — {T, F} such that f(a,b) = T iff iff b = p,, i.e., b is the
a-th prime. But how to do this in +, x plus first-order logic symbols??

(3) One can express the function (m,b) such that if m = (a1,...,an)q, then
the function returns ¢ = a; if b < N, and gives a non-existent variable c if
b > N. You may wish to try to build these sentences yourself before seeing
how they are done.

5. THE CONSTRUCTION OF SOME SURPRISING SENTENCES

Enderton’s textbook [End01] really comes to life on page 219 in Chapter 3, with
the following ingenious idea.

Lemma 5.1. Let a,b € N. Then the following are equivalent:
b = pa (where pg = 2, p1 = 3, etc.); andthere exists a ¢ € N such
that c satisfies:
(2) (a) cis odd, i.e., IsDivBy(2,¢) = F;
(b) ¢ < b (one can alternatively write ¢ < b®"));
(c) for every j € N, and prime numbers q,r such that r < b, and
NextPrime(q,r) = T, we have

Vi, (¢7 is divisible by ¢ <= ri*t is divisible by c);

and
(d) b* divides ¢ and b®T' does not divide c.

Proof. (1)=(2): we immediately see that
c=20315% .. p®

satisfies (2)(a,b,c,d).

(2)=(1): let c exist sat-
isfying (2)(a,b,c,d).Letc = 234 ... pia N whereNis freeofprime factors2,3,. .. ,pa.
We easily prove by induction that i; = j for all 0 < j < a: indeed, the case a =0
holds since c¢ is odd; if this claim holds for some value of a € N, then we have i, = a,
and hence (2¢) implies that i,4+1 = @+ 1. Then (2d) implies that b = p,,. O

Notice that 2(b) is not essential to the proof. However, 2(b) is presumably useful
in that the search for ¢ can be limited to a finite range.

Lemma 5.2. Let b € N be prime, and let b = p, (i.e., the a-th prime, with pg = 2,
p1 = 3, etc.). For c € N, the following are equivalent:

(1)
(8) c=203'5% ... po,

and

(2) c satisfies:
(a) c is odd, i.e., IsDivBy(2,¢) = F;
(b) ¢ < b (one can alternatively write ¢ < b®"));
(c) for every j € N, and prime numbers q,r such that r < b, and

NextPrime(q,r) = T, we have

v, (qj is divisible by ¢ <= rit1 is divisible by c);

GODEL’S INCOMPLETENESS THEOREM VIA UNDECIDABILITY OF THE HALTING PROBLEM

(d) b* divides ¢ and b*Tt does not divide c; and
(e) if b<r and r is prime, then r does not divide c.

Proof. (1)= (2) is clear. So let ¢ € N satisfy (2). Hence ¢ > 1 is odd; if b = 2, then
a =0, etc. U

(1) Clever(a) takes an a € N and returns the integer

c=23"5% ... pY

this can be done by noting that

(2) The function p, = b, i.e., b is the a-th prime number, can be expressed as
follows: first note for any a € N, setting
(9) b=p2 c¢=2°3"5% .. p

we have ,
(a) ¢ <b* and 2 does not divide ¢;
(b) for all ¢, r such that NextPrime(q,r) and r < b are true, we have

V3, (¢’ is divisible by ¢ <= 7! is divisible by c);
and
(c) b® divides ¢ and b**! does not divide c.
Conversely, note that if a € N, then if b, ¢ satisfy for b, c we have b = p,
and ¢ = 2°3' ... p? and b is prime

the above three conditions determine ¢ from a, b.

(3) The phrase {ag,...,am)c = b can be expressed as follows:

(4)
6. THE INGENIOUS IDEA AS A “FOR Loopr,” AND ITs CONSEQUENCES

We claim the ingenious trick to prove Lemma 1.3 is equivalent to being able
to write a “for loop.” In this section we explain this, and derive a number of
consequences.

7. LEFTOVER

which roughly speaking says that in working with sentences over (N, +, x) plus
the usual symbols of first order logic (namely V, 3, =, A, V),

REFERENCES

[EndO1] Herbert B. Enderton, A mathematical introduction to logic, second ed., Har-
court/Academic Press, Burlington, MA, 2001. MR 1801397

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BriTisH CoLUMBIA, VANCOUVER, BC
V6T 1Z4, CANADA.

Email address: jf@cs.ubc.ca

URL: http://www.cs.ubc.ca/~jf

	1. The Point of this Article: Gödel's Incompleteness Theorem
	1.1. Consequence of Lemma 1.1
	1.2. Why We Like Section 6.2 of [Sip] Lemma 1.1
	1.3. N and Enderton's Textbook enderton
	1.4. Gödel Numbers and the Proof of Lemma 1.1
	1.5. The Proof of Lemma 1.5

	2. Some Easy Phrases and One Difficult Phrase
	3. Easy Observations Regarding Gödel Numbers and Sentences
	4. Some Surprising Sentences
	5. The Construction of Some Surprising Sentences
	6. The Ingenious Idea as a ``For Loop,'' and Its Consequences
	7. Leftover
	References

