CPSC 421/501 Nor 29
(1) The formula size challenge
(2) The circuit size challenge, and

$$
P \text { vs. NP }(\{9.3 \text { of }[\text { Sip }])
$$

This is how many people wald approach P vs. NP
(3) Subbotorskaya's method of (random) restrictions
(For formula size.)
(Notes on the above will appear.]
(1) Formula size:

Rem: $\{T, F\}$ or $\{C, 1\}$

$$
1 \leftrightarrow T, 0 \longleftrightarrow f
$$

$\operatorname{Consider}\left(x_{1}, \ldots, x_{n} \in\{0,1\}\right)$

$$
\begin{aligned}
& T h_{2}\left(x_{1}, \ldots, x_{n}\right) \\
& \quad= \begin{cases}1 & \text { if } x_{1}+\ldots+x_{n} \geq 2_{1} \\
0 & \text { ơherwise }\end{cases} \\
& =O R\left(x_{i} \text { AIND } x_{j}\right) \\
& \quad \text { i< }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Th}_{2}\left(x_{1}, \ldots x_{4}\right) \\
& \left\{\begin{array}{l}
=\left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{3}\right) \vee\left(x_{1} \wedge x_{4}\right) \\
\vee\left(x_{2} \wedge x_{3}\right) \vee\left(x_{2} \wedge x_{4}\right) \vee\left(x_{3} \wedge x_{4}\right)
\end{array}\right.
\end{aligned}
$$

(i.e. some parir of variebles $=1$

$$
o R=T)
$$

farmule siz 12
Alternute form

$$
\begin{aligned}
& T h_{2}=T \Leftrightarrow \text { any } 3 \text { variables, } \\
& =\left(x_{4} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right) \\
& \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rem: } T_{2}\left(x_{1}, \ldots, x_{n}\right)=V_{i<j}\left(x_{i} \wedge x_{j}\right) \\
& \frac{0}{z}\binom{h}{2} \text { clavses } \\
& \text { SIZc }=\binom{n}{2} \cdot 2=\frac{n(n-1)}{2} \cdot 2 \\
& =n^{2}-n=\text { quadratic in } h^{n}=
\end{aligned}
$$

Impreververt:

$$
\begin{aligned}
& \left(x_{1} \wedge x_{2}\right) \vee\left(x_{1} \wedge x_{-3}\right) \vee\left(x_{1} \wedge x_{4}\right) \\
& =x_{1} \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \quad \leftarrow \text { size } 4 \\
& \left(x_{2} \wedge x_{3}\right) \vee\left(x_{2} \wedge x_{4}\right) \\
& =x_{2} \wedge\left(x_{3} \vee x_{4}\right) \quad \leftarrow \operatorname{siz} \quad 3
\end{aligned}
$$

$$
x_{3} \sim x_{4}
$$

$$
\longleftarrow s i z e
$$

L
size 9
Best possible =?
size 3 for $T_{2}\left(x_{1}, \ldots, x_{4}\right) ? ?$
$N_{0}-T h_{2}\left(x_{1},-, x_{4}\right)$
depends on all its variables...

$$
\begin{aligned}
& 1=01 \text { bincry } \\
& 2=10 \\
& 3=11 \\
& 4=100 \\
& T h_{2}\left(x_{1}, \ldots, x_{4}\right)= \\
& {\left[\left(x_{2} \text { ar } x_{4}\right) \text { ais }\left(x_{1}, a x_{3}\right)\right] \text { on }} \\
& {\left[\left(x_{1} \vee x_{44}\right) \wedge\left(x_{2} \vee x_{3}\right)\right]} \\
& =\left(x_{2} \text { NiND } x_{1}\right) \vee\left(x_{4} \operatorname{AND} x_{1}\right) \text { or } \\
& \frac{T h}{2}\left(x_{1}, \ldots, x_{8}\right)=
\end{aligned}
$$

 ets.

This implies
Formula $\operatorname{Sizc}\left(\operatorname{Th}_{2}\left(x_{1}, \ldots, x_{n}\right)\right)$

$$
\leqq n \cdot\left(\left[\log _{2} n\right\}\right)
$$

Give $f:\{c, 1\}^{n} \rightarrow\{c, 1\}$
Best result: (essentially) we can produce $f:\{0,1\}^{2}-\{0,1\}$ that require size $\geqslant n^{3-\varepsilon}$ $(\varepsilon$ any $>C)$.
It's not hard to see' most functions

$$
\begin{aligned}
& \{c, 1\}^{n} \rightarrow\{c, 1\} \\
& \left(<r 2\{\tau, f\}^{n} \rightarrow\{\tau, f\}\right) \\
& \text { require } \geqslant 2^{n} /\left(4+\log _{2} h\right)
\end{aligned}
$$

size formulas
Not had to sere canc $\{c, 1\}^{h} \rightarrow\{c, 1\}$ cha expressed as formula of size $n \cdot 2^{n-1}$

Next formulas an circuits, PVsNP \longleftrightarrow min circuit size of certain functuas

Cirevit size!

Boclen
Take an $L \leftrightarrow\{T, F\}^{k}$
(on $\left\{C_{1} 1\right\}^{*}$) that is NP-crumplete...
Produce suct an L:

$$
3 C C L C R=\left\{\begin{array}{l|l}
\langle G\rangle & \begin{array}{c}
G \text { is } \\
3 \text {-colourable } \\
\text { greph }
\end{array}
\end{array}\right\}
$$

$$
\begin{gathered}
\text { 3colore }\{0,1, \ldots, 9,14\}^{*} \\
1
\end{gathered}
$$

here we have 11 symbuls

$$
f\left(\begin{array}{ccc}
0 \mapsto & 0000 \\
1 & 0001 \\
2 \mapsto & 0<10 \\
\vdots & \\
9 \mapsto & 1001 \\
H & 1010
\end{array}\right.
$$

$$
\left.\begin{array}{rrrr}
\langle G\rangle \text { is } & 33 \# 1 & 42 \\
4 & 3 & * 7 \\
4 & -
\end{array}\right\}
$$

This converts

$$
\begin{aligned}
& \langle G\rangle \text { to }\{c, \ldots, q, \notin\}^{n} \\
& f(\langle G\rangle) \operatorname{to}\{c, 1\}^{4 n}
\end{aligned}
$$

Clalm:

$$
\left\{f(\langle G\rangle) \left\lvert\, \begin{array}{l}
G_{\text {is a }} \text { groph }
\end{array}\right.\right.
$$

then \hat{f} (3color $)$ is alsu NP-cimplete.

Giver $L \subset\{T, F\}^{*}$ or $\{0,1\}^{k}$ we get functions

Function $L, n:\{T, F\}^{n} \rightarrow\{T, F\}$ tody defining

$$
\begin{aligned}
& \text { Function }_{L, n}\left(\sigma_{1, \ldots}, \sigma_{n}\right) \\
& \quad= \begin{cases}T & \text { if } \sigma_{1 \ldots} \sigma_{n} \in L \\
F & \text { otherwise }\end{cases}
\end{aligned}
$$

The If $L \in P$, then fer all $n \in \mathbb{N}$, Function, $L_{\text {, }}$ cor be expressed as a circuit of size $\leq \operatorname{poly}(n)$.

Pref! Ccolu-Levin Theorem;
input $\sigma_{1} \ldots \sigma_{n}$, and

$$
m=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c}, q_{r i j}\right)
$$

that decides L in time $\leq C_{n} k$
then we set
$\left\{X_{i j} \gamma, Y_{i j}, z_{i q}\right\}$ as before,

Is $\sigma_{1} \ldots \sigma_{n} \in L$??
$(q 0) \underline{\left|\sigma_{1}\right| \sigma_{2 l}|\ldots| \sigma_{n}|\omega| U}$
C
C
C,
$C n^{k}$ sters
$\left(\begin{array}{l}X_{1 j \gamma}, Y_{1 j}, Z_{1 q} \quad \text { step } 1 \\ x_{2 j v}, Y_{2 j}, z_{2 q} \quad \text { step } 2 \\ \text { is determmistic }\end{array}\right.$

