CPSC $421 / 501$
Now 27
Today! give an easy
reduction.
Then! Ch 8, Ch 9 t How not to solve Pus NP

$$
\left.\begin{array}{c}
\text { Cha } \\
\text { Scctim } 3
\end{array}\right\} \begin{aligned}
& \text { How to } \\
& \text { solve } \\
& P_{\text {vs }} N P
\end{aligned}
$$

Cock-Levin The: SAT an 3SNT
acre NP-cumplete.
Last week! given 3SAT is NP-complete showed the SUBSET-SUM is NP-complete

Real work!

$$
\text { BSAT } \leq_{\rho} \text { sUBSET-sum }
$$

Another example, on (Vomewerk

$$
3 S A T \leq p \quad 3 C O L O R
$$

All thesc reductions are tricky.
Not so tricky!
Show thet $4 S A I$ is NP-complete.

$$
\text { USAT }=\left\{\langle f\rangle \left\lvert\, \begin{array}{l}
f \text { is Boolem formuk } \\
\text { in 4CNf form thot } \\
\text { is satisfiable }
\end{array}\right.\right\}
$$

4CNF: $\quad C_{1} \wedge c_{2} \wedge \ldots \wedge C_{m}$,
twhere
each

$$
\begin{aligned}
l_{i}= & l_{i 1} \vee l_{i 2} \vee l_{i 3} \vee l_{i 4} \\
& l_{i 1} \text { or } l_{i 2} \text { ar } l_{i 3} \text { ar } l_{i 4}
\end{aligned}
$$

Qï,'s are literals, meaning variables or their negations:

$$
x_{1}, \ldots, x_{n}, \neg x_{1}, \neg x_{2}, \ldots, \neg x_{n} .
$$

(1) 4SAT is in NP; given

$$
f=f\left(x_{1}, \ldots, x_{n}\right) \in 4 C N E \text {, }
$$

"guess" the values of $x_{1}, \ldots, x_{n}=T, f$ check if $f\left(x_{1}, \ldots, x_{n}\right)=T$ or F.

Really

$$
|\langle f\rangle| \Leftarrow \text { length of }
$$ description of f

$\leq p \leftarrow$ poly time reduction :
you must toke $\langle f\rangle$, in time polynomial $(\mid\langle f\rangle])$ you must have a non-det machine that always decides on true

$$
\begin{aligned}
& \leq \operatorname{pdy}(1\langle f\rangle \mid) \\
& f=x_{1} \text { or } x_{i 000000}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\left\langle x_{1} \vee x_{1000000}\right\rangle\right| \\
= & |x| \vee \times 1000000 \mid \\
= & |\mid
\end{aligned}
$$

(2) $\underbrace{3 S A T}_{r} \leq p_{p} 4 S A T$ any NP-cumple problem
(SAT, 3 COLOR, subret-sum)

Giva $f \in 3 C N F$

$$
\left(x_{1} \vee x_{2} \vee \neg x_{3}\right)
$$

AND

$$
\begin{aligned}
& \left(x_{2} \vee x_{3} \vee \neg x_{4}\right) \\
& \int_{\text {similuly }}
\end{aligned}
$$

$$
\left(x_{1} \vee x_{2} \vee \neg x_{3} \vee x\right)
$$

Similarly

$$
\left(\ell_{i 1} \vee l_{i 2} \vee l_{i 3}\right) \leftrightarrow\left(l_{i 1} l_{i 2} l^{v} l_{i 3} \vee l_{i 1}\right)
$$

Moke sure: 3 SAT $\leq p 4$ SAT (not the other way...).
"as difficult as
any problem in NP"

Chapter Q! How to solve P us NP...

Ideat we lod at formules and carcuits in Boolea algebra...

Boder formula

$$
\underbrace{\left(x_{1} \wedge \neg x_{2}\right)} \vee \underbrace{\left(\neg x_{1} \wedge x_{2}\right)}
$$

literals: $x_{1}, x_{2}, \neg x_{1}, \neg x_{2}$

(xi) x_{2}

Similery

$$
\begin{aligned}
& (1+2) \times(3+4) \\
& \text { (x) } \leftarrow 3 \times 7=21
\end{aligned}
$$

Fcrmula \leftrightarrow Tree
Circuit:
Say

$$
\begin{aligned}
& (1+5) \times(1+5) \times(1+5) \times(1+5) \\
& \times(2+3) \times(2+3)=?
\end{aligned}
$$

As a program:

$$
\begin{aligned}
& y_{1}=1+5 \\
& y_{2}=y_{1} \times y_{1}=(1+5)^{2} \\
& y_{3}=y_{2} \times y_{2}=(1+5)^{4} \\
& y_{4}=2+3 \\
& y_{5}=y_{4} \times y_{4}=(2+3)^{2} \\
& y_{6}=\text { Answer }=y_{3} \times 1 / 5
\end{aligned}
$$

Se Y_{1}, \ldots, y_{6} represents six operations t, x.

As a forme:

$$
\begin{aligned}
& (1+5) \times(1+5) \times(1+5) \times(1+5) \\
& \times(2+3) \times(2+3)
\end{aligned}
$$

has t occurring 6 times

$$
\times \quad+\frac{5 \text { times }}{11 \text { opera }\langle t i o n s}
$$

on $1,2,3,5$ occurs 12 times

By contrast:

Harar" wide" is the circuit?
How "deep"?
Many practical considerations--

Chapter G! If $L \in N P$, $L \subset \sum^{*}, \quad \Sigma=\{T, F\}$.

Then for eccl $n \in \mathbb{N}$, there is a circuit, ${ }^{\text {n }}$, al size poly (n) that computer, giver $w \in \sum^{n}$, ($|w|=n$) such that
$\omega \in L \Leftrightarrow C_{n}$ on inpout ω glues T

