CPSC $421 / 501$ Oct 23,2023

- Multi-tape TM's and
(1) $\left\{(i, j, k) \in \mathbb{N}^{3} \mid k=i+j\right\}$
(2) $\left\{(i, j, k) \in \mathbb{N}^{3} \mid k=i j\right\}$
(3) Universal TM

Recall, a universal TM recognizes ACCEPTANCE +m
def $\left.\begin{array}{l}\left.\begin{array}{l}m \text { is a T.M. } \\ \text { that accepts } \\ \text { the input } i\end{array}\right\}\end{array}\right\}$

Why not give some explicit 2-tape TM algorithms?

They get technical:

\qquad tape 1
\qquad true 2

Sey! giver
(i, j, k) say basc 10

$$
37126 \# 48512 \# 20159831
$$

Want to know
(1) is $i+j=k$?
(2) is $i \cdot j=k$
(2) is $i \cdot j=k$

$$
\begin{aligned}
& \text { (1) is } i+j=k \\
& \frac{37126}{4+48512} \leftarrow+\operatorname{taps} 2 \\
& \frac{85638}{4} \leftarrow \operatorname{tare} 3
\end{aligned}
$$

$$
i \cdot j=h
$$

$$
\begin{array}{r}
37126 \\
\times \quad 48(5)(y) 2 \\
\hline 74252 \\
\hline 37126 \quad t \\
185630 \quad 144
\end{array}
$$

running total \Leftarrow tape s sum

Multi-tape TM:
Makes it easier (mare convincing) to describe algorithms, closer to actual implementation.

Rules:

- finite number of tapes (independent of the irput, say k tapes, $k=1,2,3, \ldots$

Then k-tape machine

$$
\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)
$$

\uparrow
only difference

$$
\delta: Q \times \Gamma^{k} \rightarrow Q^{\times} \times \Gamma^{k} \times\{L, R, S\}^{k}
$$

tape k

Thu! Fancy k-tape TM, M, has ar equivalent 1 -tape TM, M^{\prime}.

Equivalent means
(1) literally, for all inputs i, m accepts $i \Leftrightarrow m^{\prime}$ accepts i m reject $i \Leftrightarrow M^{\prime}$ rejects i $m \underbrace{m}_{\text {never halts }} m^{\prime}$ loops on $i \Leftrightarrow \underbrace{\text { lops on } i}$

Q: What is the difference in speed?
Ans: PALIDROME requires n^{2} time (for on input of length n) on a 1-tape Tm, but $O(n)$ time on a 2-tupe.

Claim: Any algorithm on a k-tape machine, that sons in time
$\leq f(n)$, where $f(n)=n^{\alpha}$
some $\alpha>1$, can be run in time
$O\left((f(n))^{2}\right)=O\left(n^{2 \alpha}\right) a_{n}$
a l-tape machine.
Proof idea!
Given 2-tape algorithm. How to simulate an l-tupe machine
tape 1

$$
\text { tope } 2
$$

Each cell has same element of $\sqrt{ }$

So: let's combine the tapes:
 tape 1
cell 1) cell 24
tape 2
by intertwining

$$
\begin{array}{|c|c|c|c|c}
\hline c l+1 & c 1+2 & \text { is }+1 & \text { is th } & \cdots \cdots, \\
& \text { tare } & \text { tape } \\
\text { hew } & \text { how } \\
\text { over l } & \text { over } \\
\text { cell l } & \text { cell 1 } \\
& \text { (tape) } & \text { (tope 2) }
\end{array}
$$

-tape equivalent

of
2- ape
alger it
Rem: After time T of a 2-tepe
alg-, ie. T steps of the algorithm could have

This accents fer possibly time on (-tape machine,
for T steps on 2-tepe machine, to have total time

$$
\begin{aligned}
& \operatorname{arder}(1+2+3+\ldots+T) \\
& =\operatorname{arder}\left(\binom{T+1}{2}\right) \\
& =\operatorname{arder}\left(T^{2}\right)
\end{aligned}
$$

$\binom{$ going from time T to order $\left(T^{2}\right)}{$ is essentrally optimal, see CPSC 50}

Alternate way to go from 2 -tapes to 1 -tape algorithm:

$$
\begin{aligned}
& {\left[S_{i p}\right]} \\
& 1-t a p e
\end{aligned}
$$

 cells at time T

Altornate, Variant of method I

1-taper equvalent

could ge froum Γ to
to $C_{\text {big }}=\Gamma \times \Gamma \times\left\{\begin{array}{c}\text { is tape hect } \\ \text { here ? }\end{array}\right\}^{2}$

Also for ingot

$$
\sigma_{1}\left|\sigma_{2}\right| \ldots\left|\sigma_{n}\right| \nu|\cup| \cup
$$

add
Σ to $\Gamma_{\text {big }}$
so then

$$
=\sum c \Gamma_{b i g}
$$

Friday:
Universal TM's...

