CPCS $421 / 501$ Oct 18,2023

Today start Turing machines:
Chapter 3 of $[$ Sip $]$.
$D F A$ is $\left(Q, \Sigma, \delta, q_{0}, F\right)$
IM is $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c}, q_{r e j}, L\right)$
or simply:

$$
\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c}, q_{r_{e j}}\right)
$$

Idea! a Turing machine has a tape

Cell contains a "tape symbol":
Tape alphabet:

$$
\begin{aligned}
& \Gamma-\text { contains } \sum, \\
& \sum=\text { input alphabet }
\end{aligned}
$$

- contains blank symbd) $ص$ $L \notin \sum$
- contains any other symbols
yon want
$n=$ luring machine, over $\sum=\{a, b\}$
on input $i=a b b a \in \sum^{K}$
then initially the tape looks like
a|b|b|a|u|v|u|u|…
tape head - can move right but also to the left
tape is a read/write tape
Mechanics:

\cdots	b	b	ω	b	a	b	a	u	u	u	\cdots

δ function tells us: (1) what is
written over "a" - any symbol in Γ
(2) do we move L or R

Q: What hoppers when you get an instruction to move $L=$ left when Lets say (most standard): in this case you don't move, tape head remains over cell 1.

Q: What about $S=$ stay still versus L, R

For now (but not for 2-tape or multi-thpe TM) we don't
allow S, on L, R

$$
\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times\{L, R\}
$$

Formally, a Turing machine is a 7 -tuple

$$
\begin{array}{|}
\left(Q, \sum, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right) \\
\text { Set of input tape } \\
\text { states alphabet toolphabet }
\end{array}
$$

$$
\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times\{L, R\}
$$

$$
\left[\begin{array}{l}
\text { intuitively } \\
\delta(q, \gamma)=\left(q^{\prime}, \gamma^{\prime}, L^{o r}\right) \\
\left.q^{\prime}=\text { new state, } r^{\prime}=\begin{array}{l}
\text { symbol written aves } \\
\text { where } \\
\nabla
\end{array}\right] \\
\text { is situated }
\end{array}\right]
$$

$G_{\text {accept }} q_{\text {reject }}$ states sit. when you reach them, the T.M, "halts"

Any T.M., on input $i \in \sum^{*}$ either

$$
\begin{aligned}
& \text { accents i - you transition to } q_{\text {acc }} \\
& \text { rejects i-" " }{ }^{\text {" }} q_{\text {rej }} \\
& " \text { loops" doesn't halts, i.e. }
\end{aligned}
$$

never reaches $q_{\text {acc }}, q_{\text {re }}$
A T.M, M, recognizes the language

$$
\left\{i \in \sum^{\alpha} \mid m \text { accepts } i\right\}
$$

A T. m, M, is a decider if it always halts, i.e. for any $i \in \sum^{*}$, M either accepts or rejects i

A language $L \subset \Sigma^{k}$, is
(Turing-) recognizable if some T.M., m, recognizes L, and is
(Turing-) decidable if some T.m., m, that is a decider recognizes L.
Remark: Unlike Python ($C, A P L_{1} \ldots$) programs, T. Mi's have only a single accept state, qace, and a single

$$
\begin{aligned}
& \text { reject state } \\
& L=\left\{\begin{array}{l|l}
w \in\{a, b\}^{2} & \left.\begin{array}{c}
w \\
w
\end{array}\right) \text { ends in in } \\
\text { an "an "al }
\end{array}\right\} \\
& \Delta f A: \rightarrow O^{a} \rightarrow O^{a} \\
& b b_{0}^{b} a \\
& \partial_{b}
\end{aligned}
$$

$\operatorname{AccFut}(\varepsilon)=\operatorname{Acxfut}(b)$ and therefore also

$$
\underset{b}{\longrightarrow} 0 \stackrel{a}{\leftrightarrows} \circlearrowleft \circlearrowleft \circlearrowright a
$$

Tim. (technically, although
qacct qrej, qu car be one of $\left.q_{\text {acc }}, q_{r e j}\right)$

T
tells you
whet state
you're in this indicates tape head is $O R$

tape alphabet over cell 1 qa bb a aqaba on quabbaws

