- Finish Myhill-Nerode:

DIV-BY-3-ONLY-1-0

= \{ 0,111,1011,1101,1110, \ldots \}

= \{ \omega \in \{0,1\}^* \mid \omega = 0, \text{ or } \omega \text{ begins in } 1, \text{ and has its number of } 1's \text{ divisible by } 3, \text{ i.e. } \equiv 0 \pmod{3} \}

a \equiv b \pmod{3} \iff (a \mod{3}) = (b \mod{3})

- Maybe start Turing machines (Ch. 3 [Sip])
DIV-BY-3-ONLY-1-0 = \{0, 111, 1011, 1101, \ldots\}

Initial state, is where \(\delta \) is taken to

\[\text{AccFut}(0) = \text{AccFut}(3) = \bot \]
\[
\text{AccFut}(\cdot) = L
\]

\[
\begin{align*}
\text{AccFut}(\cdot) &= \text{AccFut}(0) \\
&= \{ s \mid os \in L \} \\
&= \{ \exists \delta : \Theta \exists c = o \in L \\
& \quad \text{(anything non-empty)} \notin L \}
\end{align*}
\]

\[
\text{AccFut}_L(1) = \{ \omega \in \{0,1\}^* \mid \#1's \text{ in } \omega \equiv 2 \pmod{3} \}
\]
\[\text{AccFut}(\cdot) = \text{AccFut}(1) = \{ \# i^3 \equiv 2 \pmod{3} \}\]

\[\text{AccFut}(\cdot) = \{ 3 \}\]

\[\text{AccFut}(\cdot) = \text{AccFut}(00) = \emptyset \]

\[\text{AccFut}(\cdot) = L \]

\[\text{AccFut}(01) \]
AccFut(\cdot) = L

AccFut(\cdot) = \{\# \mid \text{is } \equiv 2 \pmod{3}\}

AccFut(\cdot) = \emptyset

AccFut(\cdot) = AccFut(11) = \{\#(1's \text{ is } \equiv 1 \pmod{3}\}

To Do:

\text{ }
$\text{AccFut}(\cdot) = \emptyset$

$\text{AccFut}(000) = \emptyset$
\[
\text{AccFut}(\cdot) = \left\{ \#1's \equiv 1 \pmod{3} \right\}
\]

\[
\text{AccFut}(111) = \left\{ \#1's \equiv 0 \pmod{3} \right\}
\]

\[
\text{AccFut}(110)
\]

\[
L = \left\{ 0, 111, 1011, \ldots \right\}
\]

does not contain 0111

contains 0111
Amst

AccFl(\cdot) = \{ e \}

AccFl(\cdot) = \{ e \}

AccFl(\cdot) = \emptyset

AccFl(\cdot) = \{ e \}

\{ e \} \leq 2 (\text{mod} 3)

\{ e \} \leq 2 (\text{mod} 3)

\{ e \} \leq 0 (\text{mod} 3)
Class Ends ---