$\operatorname{CPSC} 421 / 501$ Oct 4,2023
Last time: languages like

$$
\left\{a^{3}, a^{5}\right\}^{*},\left\{a^{5}, a^{7}\right\}^{*},\left\{a^{6}, a^{10}\right\}^{k}
$$

are a bit mysterious.

Today: If L_{1}, L_{2} are regular, then

$$
L_{1} \cup L_{2}, L_{1} \circ L_{2}, L_{1}^{*}
$$

are also regular.

Leads to: NFA $(N=$ non-deterministic $)$ and regular expressions

Gal: write a $D F A$ for

$$
L^{+}=\varepsilon \cup L^{1} \cup L^{2} \cup L^{3} \cup \ldots
$$

where
$L=\left\{a^{3}, a^{5}\right\}$, recognized by
$\rightarrow(90) \xrightarrow{a} q_{1}{ }^{a}\left(q_{2} \rightarrow q_{3}\right)$

$$
\int_{a}^{(96)} \leftarrow^{a} \circlearrowleft(99) \leftarrow^{a}(94)
$$

Trick / method:
slight strengthen our DfA'S:

Allow:

"jump" or "empt sting transition "
(2) (95) there is no "a" ? ? ?
(3) $\bigcirc \xrightarrow[a]{a} 0$ allow same symbol

$$
L^{\star}=\left\{a^{3}, c^{5}\right\}^{* 2}
$$

soy we went to accept $a^{6} \in L^{2}$

$$
a^{6}=a^{3} \circ a^{3}, \quad a^{3} \in L:
$$

(1)
$\rightarrow(90) \cdots \cdots(93)$ Get to here reading a^{3}
(2)
$\rightarrow(90) \in$ get to $q 0$ lacking read a^{3}
(3) $\rightarrow(961 \sim \cdots(93)$ or $(99$

In [sip]:

deterministic non-deterministic $=$
Define the language recognized by an NFA to be $\omega \in \Sigma^{*}$ sit. there is at least one accepting path

Fermelly, on NFA is a tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

$$
\begin{array}{r}
\delta: Q \times\left(\sum u\{\varepsilon\}\right) \\
\longrightarrow \operatorname{Power}(Q) \\
\begin{array}{l}
\sum_{a}^{\varepsilon} 0 \\
y_{c}
\end{array} y_{c}^{c} \\
c=\{a, b, c\}
\end{array}
$$

$$
\left.\begin{array}{l}
\text { Each NFA, } M=\begin{array}{l}
\left(Q, \sum, \delta, q u, F\right) \\
\text { recognizes }
\end{array} \\
L=\left\{\omega \in \Sigma^{*} \left\lvert\, \begin{array}{l}
\text { there is ct least } \\
\text { one allowable } \\
\text { sequence of } \\
\text { transitions in } \\
M \text { that takes } \\
W \text { to a state } \\
\text { in }
\end{array}\right.\right\}
\end{array}\right\}
$$

For DEA's

$$
L=\left\{\omega \in \sum^{*} \left\lvert\, \begin{array}{c}
\omega \text { is taken to } \\
\text { a state in } f
\end{array}\right.\right\}
$$ by M

So sey

$$
L_{1}=\{a b\}^{\chi}
$$

NFA:

$$
\begin{aligned}
& L_{2}=\{a b b\}^{\infty} \rightarrow C_{b}^{C} \overbrace{b}^{a} 0 \\
& L_{1} v L_{2}
\end{aligned}
$$

$L_{1} L_{2}$

Similarly
L_{1} recgnized by $\rightarrow 0 \ll$
$L_{2} \quad$ " $\quad{ }^{\rightarrow 0} \square$

$$
\rightarrow 0 \frac{\varepsilon}{\varepsilon^{\jmath} \circ} \circ \square
$$

$$
L=\left\{a^{3}, a^{5}\right\}
$$

Say $L=\left\{a^{2}, a^{3}, a^{5}\right\}$ L^{k}

Thu: If L is recognized by an $N f A_{\text {, }}$ then L is regular, ie. there is a DFA recognizing L.

Pf: Given an NE A,

$$
m=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

let

$$
\begin{gathered}
m^{\prime}=(\operatorname{Power}(Q), \Sigma, \widetilde{\delta}, \\
\left.\widetilde{q}_{0,} \tilde{F}\right)
\end{gathered}
$$

where
(1) an element of $\operatorname{Power}(Q)$ means "all possible elements of Q where you could be after reading the first so mary inputs'
e.g.

NFA!

Read! ε : we can be in $\left\{q_{0}\right\}$

$$
\begin{array}{llll}
a & \cdots & \cdots & \left\{q_{1}\right\} \\
a^{2}: & \cdots & \cdots & \left\{q_{2}\right\} \\
a^{3}: & \ddots & \cdots & \cdots
\end{array}\left\{\begin{array}{l}
\left.q_{3}, q_{0}\right\}
\end{array}\right\}
$$

read a^{5}; we can be in $\left\{q_{5}, q_{0}, q_{2}\right\}$

$$
\left.a^{6}: \quad . \quad \cdots \quad \cdots \quad\left\{\quad q_{1}, q_{3}, q_{0}\right)\right\}
$$

We accept the "states" of $\operatorname{Power}(Q)$, i.e. $Q^{\prime} \subset Q$ ifs $\left|Q^{\prime} \cap f\right| \geqslant 1$.

