CPSC 421/501 Oct 4, 2023 Last time: languages like $\{a^{3},a^{5}\}^{*}, \{a^{5},a^{7}\}^{*}, \{a^{6},a^{10}\}^{*}$ are a bit mysterious. Today! If Li, Lz are regular, $L_{\nu}L_{\tau}, L_{\nu}L_{\tau}, L_{\tau}^{*}$ are also regular. Leads to - NFA (N=non-deterministic) and regular expressions 1,2 K 1.3 [Sip] [Sip]

Gali unite a DFA for $L^{+} = \varepsilon \cup L^{+} \cup L^{2} \cup L^{3} \cup \dots$ L= { c³, c⁵} recognized by $\rightarrow (9_0) \xrightarrow{\alpha} (9_1) \xrightarrow{\alpha} (9_2) \xrightarrow{\alpha} (9_3)$

Trick (method ! DFA's ! slight strengthen av $\neg (2) \rightarrow (2) \rightarrow (2) \rightarrow (2)$ Allow: () E) () (jump) or "empty sting transition (95) there is no "a" to lead to many states d d B, \bigcap

 $L^{\pm} = \{c^3, c^5\}^{\pm}$ say we want to accept a GEL2 $a^6 = a^3 \circ a^3$, $a^3 \in L$; 3 - Gov - May and Qu

1 accept ccept 23025 Q30Q3 In (Sip]! () K I I D 5 L V deterministiz non-deterministic Define the language recognized by an NFA to be we Et s.t. there is at least one accepting path

Fermelly, en NFA is a tuple (Q, Σ , δ , q_0 , F) where G; $Q \times (\Sigma \cup \{c\})$ - Power (Q) 50 C ک = { < , < , < }</p>

Each NFA, M= (Q, Z, S, 20, F) recognizes

there is at least L= fwez* one allowable sequence of transitions in M that takes to to a state in F

For DFA's wis taken to (L= d WEZ* a state in F by M

50 54 J ab} C NFA: - \supset G 2 ~ { ~ b } * Ĺ C

LUL 9 5 Similar rec ogvize l ۱, ١٦ -*S* C d

 $S \sim [c ~ f ~ a^{2}, a^{3}, a^{5}]$ LK Thm: If L is recognized by an NFA, then L is regular, i.e. there is a DFA recognizing L.

Pf! Given an INFA, $M=(Q, \Sigma, S, q_0, F)$ et $M' = (Power(Q), Z, \delta),$ let Qo, F) where (1) an element of Power (Q) means "all possible elements of G where you could be after reading the first so many inputs

و,ح. NFA ! ٤ Q (94 ε¦ 5 90 } Rend ! can be ih いて 49.3 a a': 2922 • • ι ~ C^{3} 193,905 1) ι. G.Y : 794,91} h ۱ ۷ i ۲

read a⁵; we can be in {95,90,92} a^{6} : \cdots $\left\{ \begin{array}{c} q_{1}, q_{3}, q_{3} \end{array} \right\}$ We accept the "states" of Power(Q), i.e. Q'CQ if $[Q'\cap F] \ge 1$.