CPSC 421/501 Sept. 29, 2023 Today: - Regular and non-regular languages over $\Sigma = \{a\}$ - Regular Expressions and Regular Languages, SIZ NFA's moturtions \$1.3 Regular Expressions Specifically! Define U, o, *, i.e. Lohz, Lohz, Lt prove each is regular if Li, Lz are regular. Example: $\left(\left\{\alpha^{5}\right\}\cup\left\{\alpha^{7}\right\}\right)^{*}=???$

Note: In [Sip], §1.3, a regular expression is - Ø, E, alphabet symbol - A (union (u)) of other (concatenation (o)) regular (star (*)) (expressions We don't allow - (negation) Examples: if $\Sigma = \{a, b, c, w\}$, E* ubc E* = E* ou oboc o E* $\Sigma^*(ubcucba)\Sigma^*$

On the homework! a DFA? GIVC (Q, Z, F, q_c, F) 7 / 5et5 5: Give the volver of $\delta(q, \sigma)$ a table tγ 5(9.5) 0=9 J=P 9-90 9-q=`` | q--

O√ \bigcirc Э G 70 90

 $\sum = \int G \left\{ \right\}_{0}$ Define: If Li, Lz are languages over Z, then Lulz = usual union as sets $\left(\int \frac{\Psi}{L_{i}} = \frac{2}{5} \int \frac{1}{5} \int \frac{1}{$ y require (L, oL, oL) NFA, 5h2Example: Z={a},

 $L_{1} = \{ aaaaa \} = \{ a^{5} \}$

 $L_2 = \{ a^{2} \}$

 $= \{ \xi, \alpha^{5}, \alpha^{7}, \alpha^{5} \alpha^{5}, \alpha^{5} \alpha^{7}, \alpha^{7}, \alpha^{7} \alpha^{7}, \alpha$

 $a^{\dagger}a^{\dagger}, a^{\dagger}a^{\dagger}a^{\dagger}, a^{\dagger}a^{\dagger}a^{\dagger}, \dots$

{aa, bba} = {E, aa, bba, acaa,

aabba, bbaaa, bbabba,--]

 $\alpha \alpha \alpha \alpha = (\alpha, \alpha, \alpha, \alpha, \alpha)$ = (a) o (a) o (aaa) ac bha laabba ل (د, م) د (۲, ۲, ۲)

 $\{a^{5},a^{7}\}^{*}$ $= \int \mathcal{E}, a^{5}, a^{7}, a^{5}a^{5}, a^{5}a^{7}, a^{7}a^{7}$ $a^{s}a^{s}a^{s}$, $a^{s}a^{s}a^{s}$, $= \left\{ \mathcal{E} = \mathcal{A}^{0}, \mathcal{A}^{1}, \mathcal{$ a¹⁷, ... ?? (a⁵)^P(a⁷)^q gets aⁿ for all n sufficiently large, $\exists n_0 \quad \text{s.t. if } n \geqslant n_0, \quad \alpha^n \in \{\alpha^s, \alpha^r\}^*$

 $\int = \left\{ a^{\circ}, A^{3}, A^{5}, A^{6}, a^{8}, a^{1}, a^{10} \right\}$ $a^{(1)}, a^{(2)}, a^{(2)}, a^{(3)}$) Not α^{7} α^{13}, α^{14})) cbserve: if $a^n \in \{a^3, a^5\}^k$) then $a^{n+3} \in \{a^3, a^5\}^k$; $\begin{cases} b^{6}, b^{10} \\ b^{7}, b^{$

 $\left(\alpha^{23}, \alpha^{53}, \alpha^{(\alpha)} \right)^* = - - -$

(* is a rather serious operation)

Ren: $\Sigma = \{\alpha\}$, what is a DFA over Σ ?

where L = language recognized

by DFA. $e_{i} \mathcal{A} \cdot \left\{ a_{j}^{3}, a_{j}^{5} \right\}^{*} = \left\{ e_{i} a_{j}^{3}, a_{j}^{5}, a_{j}^{6}, a_{j}^{6}$ $\frac{1}{9} \frac{a}{9} \frac{a}$

- fall nis a perfect square} $= \begin{cases} (k^2) \\ k \in \mathbb{N} \end{cases}$ regular, No: Lisinfinite, se DFA recognising L Looks (ike

Next time! if L is regular, then su is La. lic Non-deterministic finite automata NFA

National Truth and Reconciliation Day Saturday, Sept 30 Observed Monday, Gd 2

- It is not easy for survivors of the Indian Residential School System to talk about their past trauma - Survivors and their families tire from giving repeated explanations -Children are not responsible for the mistakes of their parents, but have the obligation to learn about these mistakes - One of my favourite suggestions Learn for yourself