CPSC 421/501 Sept. 29, 2023
Today:

- Regular and non-regular languages over $\sum=\{a\}$
- Regular Expressions and Regular Languages, $\$ 1.2$ NF A's motuct $\rho 1.3$ Regular Expressions

Specifically:
Define $u, 0, *$, i.e.
$L_{1}, v L_{2}, L_{1} \cdot L_{2}, L_{1}^{*}$
prove each is regular if L_{1}, L_{2} are regular.
Example: $\left(\left\{a^{5}\right\} \cup\left\{a^{7}\right\}\right)^{*}=? 77$

Note: In $\left[S_{i p}\right], \S 1.3$, a regular expression is

- ϕ, , alphabet symbol
- A \(\left\{\begin{array}{l}union (u) \\
concatenation (0) \\

star (*)\end{array}\right\}\)| of other |
| :--- |
| regular |
| expressions |

We don't allow \neg (negation)

$$
\begin{aligned}
& \text { Examples: if } \Sigma=\{a, b, c, u\}, \\
& \Sigma^{*} u b c \Sigma^{*}=\Sigma^{*} \circ u \circ b \circ c \circ \sum^{*} \\
& \sum^{*}(u b c \cup c b a) \Sigma^{*}
\end{aligned}
$$

On the homework! give a $D F A$:

$$
\begin{aligned}
& \left(Q, \Sigma, \delta, q_{0}, F\right) \\
& \prod_{\text {sets }} \lambda
\end{aligned}
$$

$\delta!$

- Give the values of $\delta(q, \sigma)$
- il a table

$\delta(q, \sigma)$	$\sigma=a$	$\sigma=b$
$q=q_{0}$	$q=$	
$q=\vdots$	q_{-}	

$$
\Sigma=\{a\}
$$

Define: If L_{1}, L_{2} are languages over \sum, then
$L_{1} \cup L_{2}=$ usual union as sets

$$
\left\{\begin{array}{l}
\left\{L_{1} \circ L_{2}=\left\{w_{1} \circ \omega_{2} \left\lvert\, \begin{array}{c}
w_{1} \in L_{1} \\
w_{2} \in L_{2}
\end{array}\right.\right\}\right. \\
\left\{\begin{array}{l}
\left\{L_{1}^{*}=\varepsilon \cup L_{1} \cup\left(L_{1} L_{1}\right)\right. \\
y_{\substack{\text { require } \\
N \in A_{1} \S 1,2}} \cup\left(L_{1} \circ L_{1} \circ L_{1}\right) \cup \ldots
\end{array}\right.
\end{array}\right.
$$

Example: $\Sigma=\{a\}$,

$$
\begin{aligned}
& L_{1}=\{a a a a a\}=\left\{a^{5}\right\} \\
& L_{2}=\left\{a^{7}\right\} \\
& \left(L_{1} \cup L_{2}\right)^{*}=\left\{a^{5}, a^{7}\right\}^{*} \\
& =\left\{\varepsilon, a^{5}, a^{7}, a^{5} a^{5}, \underline{a}^{5} a^{7}, a^{7} a^{5},\right. \\
& = \\
& \left.a^{7} a^{7}, a^{5} a^{5} a^{5}, a^{5} a^{5} a^{7}, \ldots\right\} \\
& =\{a a, b b a\}^{*}=\{\varepsilon, a a, b b a, a a a a, \\
& \\
& \\
& \text { a } a, \underbrace{b b a}, \underbrace{b b a} \underbrace{a a}, b b a b b a,-\cdots\}
\end{aligned}
$$

$$
\begin{aligned}
& a a a a a=(a, a, a, a, a) \\
& =(a) \circ(a) \circ(a a a)
\end{aligned}
$$

$$
\left.\begin{array}{l}
\frac{a a}{b} \underbrace{b b a} \\
(c, a) c(b, b, c)
\end{array}\right\} \quad a a b b a
$$

$$
\left.\begin{array}{rl}
\left\{a^{5}, a^{7}\right\}^{k} \\
= & \left\{\varepsilon, a^{5}, a^{7}, a^{5} a^{5}, a^{5} a^{7}, a^{7} a^{7}\right. \\
& a^{5} a^{5} a^{5}, a^{5} a^{5} a^{7}, \ldots
\end{array}\right] \begin{aligned}
& =\left\{\varepsilon=a^{0}, a^{5}, a^{7}, a^{12}, a^{14}, a^{15},\right. \\
& \\
& a^{17}, \ldots ? ? \\
& \left(a^{5}\right)^{p}\left(a^{7}\right)^{q} \text { gets } a^{n} \text { for }
\end{aligned}
$$ all n sufficiently large, $\exists n_{0}$ sit. if $n \geq n_{c}, a^{n} \in\left\{a^{5}, a^{7}\right\}^{*}$

$$
\begin{aligned}
& \left\{a^{3}, a^{5}\right\}^{*}=\left\{a^{0}, a^{3}, a^{5}, a^{3+3}, a^{3+5},\right. \\
& \text { 万 } \\
& a^{5+5}, a^{3+3+3}, a^{3+3+5} \\
& 1=\left\{a^{0}, a^{3}, a^{5}, a^{6}, a^{8}, a^{4}, a^{10},\right. \\
& a^{11}, a^{12}, \\
& \text { Not } a^{7} \\
& \left.a^{13}, a_{j}^{11},\right\} \\
& \text { observe: if } a^{n} \in\left\{a^{3}, a^{5}\right\}^{k} \\
& \text { then } a^{n+3} \in\left\{a^{3}, a^{5}\right\}^{k} \\
& \left\{b^{6}, b^{10}\right\}=\left\{b^{0}, b^{6}, b^{10}, b^{12}, b^{16},\right. \\
& b \leadsto a^{2} \\
& \left.b^{18}, b^{20}, \ldots\right\}
\end{aligned}
$$

$$
\left\{a^{23}, a^{53}, a^{10}\right\}^{2}=\ldots
$$

(* is a rather serious apctation)
=
Rem: $\Sigma=\{a\}$, whet is a DFA over \sum ?

then...

if length aytle J is p then Eer suffeciently large n

$$
a^{n} \in L \Leftrightarrow a^{n+p} \in L
$$

where $L=$ language recognized by DFA.

$$
\frac{\text { ecg. } \frac{\left\{a^{3}, a^{5}\right\}^{*}}{*}=\left\{\varepsilon, a^{3}, a^{5}, a^{6},\right.}{\left.a^{8}, a^{9}, a^{10}, \ldots\right\}}
$$

$\left.\rightarrow q_{0}\right) \xrightarrow{a}\left(q_{1} \stackrel{a}{\rightarrow}\left(q_{y}{ }^{a}\left(q_{3}\right) a^{a}\left(q_{4}\right)\right.\right.$
$\int_{\varepsilon} a^{1} \prod^{2}$

$=\left\{a^{n} \mid n\right.$ is a perfeod squire $\}$

$$
=\left\{a^{\left(k^{2}\right)} \mid k \in \mathbb{N}\right\}
$$

regulur?
No: Lisinfinite, sc DFA recegnizing L looks like

since L is infinite, one of the states along the cycle hus to accept secy
 but then $a^{n_{0}}, a^{n_{0}+p}, a^{n_{0} t^{2} p}, \ldots \in L$

Next time! if L is reguler, ther su is L^{*}.

Via
Nan-deterministic Einite autometa

$$
N \quad F \quad \curvearrowright
$$

National Truth and
Reconciliation Day
Saturday, Sept 30
Observed Monday, Od 2

- It is not easy far survivors of the Indian Residential School System to talk about their past trauma.
- Survivors and their families tire from giving repeated explanations - Children are not responsible for the mistakes of their parents, but have the obligation to learn about these mistakes
- One of my favourite suggestions "Learn for yourself "

