Feedback:

- Many thanks for the feedback!

- Terms: decidable, recognizable, etc. — there is a table in §2.4 of the handout

- Remarks on my enthusiasm and handwriting

- Next reason for enthusiasm:
 regular and non-regular languages over \(\Sigma = \{ a \} \).

New as of 2021, based on a question of Markus de Medeiros
Remark.

\textsc{Non-Python} (in the handout) equals \textsc{Not-Prog-Plus-Input} (in class), equals \[
\{ \text{strings not of the form } p\sigma_0^i \mid \text{where } p \text{ is a valid Python program} \}\]
is decidable (in polynomial time)

Also

\textsc{Groucho-Marx-Self} equals \textsc{Non-Self-Acceptance} equals \[
\{ p \mid p \notin \text{LanguageRecBy}(p) \}\]
Today

- Review the formal definition of a DFA as a tuple \((Q, \Sigma, \delta, q_0, F)\)

- Possible examples:

 \[L = \{ w \in \{a, b\}^* \mid \text{first letter of } \omega \} \]

 \[L = \{ w \in \{0, 1\}^* \mid \text{w, in binary, represents an integer divisible by 3} \} \]

 and/or similarly, with \(w \in \{0, 1, \ldots, 9\}^* \), etc.

- Regular and non-regular languages when \(\Sigma = \{a\} \)
Last class: begin with example

\[\Sigma = \{ a, b, c, \lambda \} \]

\[\mathcal{L} = \{ s_1 u b c s_2 \mid s_1, s_2 \in \Sigma^* \} \]

\[Q = \text{set of states} = \{ q_0, q_1, q_2, q_3 \} \]
In the picture of what a DFA is

\[\xrightarrow{\text{non-accepting state}} \quad \xrightarrow{\text{accepting state}} \]

initial state

input \(\sigma_1, \sigma_2, \sigma_3, \ldots, \sigma_n \)
Formally, a DFA (deterministic finite automaton) is a tuple

$$(Q, \Sigma, \delta, q_0, F)$$

$Q =$ states of DFA

$\Sigma =$ alphabet

$\delta : Q \times \Sigma \rightarrow Q$

meaning

$\delta(q, \sigma) =$ the next state that you move to when in state q, next input symbol is σ
$q_0 = \text{initial state}$

$F = \text{set of accepting states}$

"final"

We say a DFA $(Q, \Sigma, \delta, q_0, F)$ accepts i if

$i \in \Sigma^*$, and when we run i on $M = (Q, \Sigma, \delta, q_0, F)$

we end in a state $\in F$.

Language recognized by M
\[\{ i \in \Sigma^* \mid M \text{ accepts } i \} \]

A language \(L \subseteq \Sigma^* \) is regular if \(L \) is recognized by some DFA, \(M = (Q, \Sigma, \delta, q_0, F) \).

(Otherwise we say \(L \) is non-regular.)

Make the formalities as simple as possible.
Remark

0 \rightarrow "no"

6 \rightarrow "yes"

all DFA's can be viewed as very simple Python programs

Q in a DFA roughly program line or set of lines

"Complexity" of a regular might be the minimum number of states
Another example:

\[\{ s \in \{0,1,\ldots,9\}^* \mid \text{s represents a string in decimal divisible by 3} \} \]

- we don't allow \(\varepsilon \)
- leading 0's OK

\[\{ 3, 6, 9 \} \]

\[\{ 0, 00, 03, 06, 09, 12, 15, \ldots \}

\[96, 99, 000, 003, \ldots \} \]

DIV-BY-3-IN-DECIMAL-
LEADING-0'S-OK
Algorithm: an integer in decimal is divisible by 3 iff the sum of its digits is divisible by 3.
DIV-BY-10 - IN-DECIMAL-LEADING-ZEROS

- OK

- So far, not div by 10

- So far div by 10

We can merge \mathcal{Q}_0 and \mathcal{Q}_1.
So for the sum is divisible by 3.

So far, the sum mod 3 is 1.

So far, the sum mod 3 is 2.