CPSC $421 / \mathrm{sal} S_{\text {ep }}$ 27,2023
Feedback:

- Many thanks for the feedback!
- Terms: decidable, recognizable, etc. - there is a table in $₹ 2.4$ of the handout
- Remarks on my enthusiasm and handwriting
$\left\{\begin{array}{l}\text { - Next reason for enthusiasm: } \\ \text { regular and non-regular } \\ \text { languages over } \sum=\{a\} .\end{array}\right.$
New as of 2021 , based on a question of Markus de Medeiros

Remark.
INON-PYTHON (in the handout) equals

NOT-PROG-PLUS-INPUT (in class) equals
$\left\{\begin{array}{l}\text { strings not of the form } p \sigma_{0} i \\ \text { where } p \text { is a valid Python program }\end{array}\right\}$ is decidable (in polynomial time)

Also

$$
\begin{aligned}
& \text { GROUCHO-MARX-SELF equals } \\
& \text { NON-SELF-ACCEPTANCE equals } \\
& \{p \mid p \notin \text { LanguageRec By }(p)\}
\end{aligned}
$$

Today

- Review the formal definition of a DFA as a tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Possible examples:

$$
\left.\begin{array}{l}
L=\left\{w \in\{a, b\}^{*} \left\lvert\, \begin{array}{ccc}
\text { first } & \text { letter of } w \\
\text { last } & \text {.. } & \text {.. }
\end{array}\right.\right\}
\end{array}\right\}
$$

and/ar similarly, with $\omega \in\{0,1, \ldots 9\}^{*}$, etc.

- Regular and non-regular languages when $\Sigma=\{a\}$

Last class: begin with example

$$
\begin{aligned}
& \Sigma=\{a, b, c, u\} \\
& L=\left\{\left(s_{1} u b c\left(s_{2}\right) \mid s_{1}, s_{2} \in \Sigma^{*}\right\}\right.
\end{aligned}
$$

$$
Q=\text { set of states }=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}
$$

In the picture of what a DEA is

Formally, a DFA (deterministic finite automaton) is a tuple

$$
\begin{aligned}
& \left(Q, \sum, \delta, q_{0}, F\right) \\
& Q=\text { states of } D f A \\
& \Sigma=\text { alphabet } \\
& \delta: Q \times \Sigma \rightarrow Q
\end{aligned}
$$

meaning

$$
\delta(q, \sigma)=\text { The next }
$$

move to when in state q, next input symbol is σ
$q_{c}=$ initial state
$F=$ set of accepting states

$$
=\because u \text { final } "
$$

We say a $\operatorname{DF} A^{\prime \prime}(Q, \varepsilon, \delta, q 0, F)$ accepts i" if
$i \in \sum^{*}$, and when we run
i on $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
we end in a state $\in F$.
Language recognized by M
is

$$
\left\{i \in \sum^{*} \mid \text { h accepts } i\right\}
$$

A language $L \subset \sum$ is
regular if L is recognized
by some $D f A, M=\left(Q, \varepsilon, \delta, q_{0}, F\right)$
(otherwise we say) L is non-regular)
make the
formalities as simple as possible

Remarle
$\bigcirc \leftrightarrow{ }^{3}$ "
$(\because) \longleftrightarrow$ "yes"
all Nf A's $\left\{\begin{array}{c}\text { can } \\ \text { be } \\ \text { viewed } \\ \text { as }\end{array}\right\}$ very simple Python programs

Q in a DFA roughly program \leftrightarrow line or set of lines
"Complexity" of a regular might be the minimum number of states

Another example:

$$
\left\{s \in\{0,1, \ldots, 9\}^{*} \left\lvert\, \begin{array}{c}
s \text { represents } a \\
\text { string in decimal }
\end{array}\right.\right\}
$$

- we dart allow E
- leading O's OK

$$
\begin{aligned}
& =\{0,3,6,9 \\
& 96,03,06,09,12,15, \ldots \\
& 969,000,003, \ldots\} \\
& \text { DIV-BY-3-IN-DECIMAL- } \\
& \text { LEAOING-O'S -OIL }
\end{aligned}
$$

Algorithm: an integer in decimal is dwisible by 3 iff the sum of its digits is divisible by 3

