CPSC 421/501 Sept 20, 2023
Last time: $L \subset \sum_{A S C I I}^{*}$ is:
decidable if for some p : for all $i \in \sum_{\text {ASCI_ }}^{*}$

$$
p \text { on input } i= \begin{cases}\text { "Yes" } & \text { if } i \epsilon L \\ \text { "no" } & \text { if } i \notin L\end{cases}
$$

recognizable if same, but p on inprli $\begin{cases}=\text { "yes" } & \text { if } i \in L \\ \neq \text { "Yes" } & \text { if } i \notin L\end{cases}$ Today," Runnig algorithms in parallel" AND Paradoxes

Concretely: $\quad L^{c}$ or $L^{\text {comp }}$ or L

ThmI:Let L and $\sum_{\operatorname{AscIJ}}^{*} L$ be recognizable, then L is desidabk.

Thm 2: AccEPI_SOME_INPUT is recognizable.

$$
\left.\begin{array}{l}
A C C E P T \text { _SOME ,INPUT } \\
=\left\{\begin{array}{l|l}
p \in \sum_{\text {ASCII }}^{*} & \text { (at least one) input }
\end{array}\right\}
\end{array}\right\}
$$

Tho I Prewf!
Example: short description

INT ≤ 5

$$
=\left\{\begin{array}{l|l}
i \in \sum_{\text {AScII }}^{k} & \text { irepresents an } \\
\text { integer } \leq 5
\end{array}\right\}
$$

$$
\text { verysillyipy }=p
$$

$$
p \text { on input } i=\left\{\begin{array}{l}
\text { "Yes" if } i \in I N T \leqslant S \\
\text { "nu" "loops" if i\&IINTSS}
\end{array}\right.
$$

say wc have
another q (equally sill), sit.)

$$
q \text { on input: }= \begin{cases}\text { "yes" } & \text { if } i \& I N T \leqslant 5 \\ \text { "rö, "lops" if } i \in I N T \leqslant S\end{cases}
$$

Giver i
run p for 1 step :
" q "l skep un i

1. p fr 2 steps or i
$\begin{array}{lllllll}1 & q & い & \cdots & \cdots & 1\end{array}$

$$
\begin{array}{llllll}
p & 1 & 30 & 1 & \cdots & \cdots \\
q & \cdots & 30 & \cdots & \cdots
\end{array}
$$

If $L<\sum^{k}$, we write $L^{\text {corp }}\left(L^{c}\right.$ or $\left.L\right)$ for the complement of L

$$
\sum^{*} \backslash L
$$

here \sum has to be understaed if we write L comp

Exarry

$$
\begin{aligned}
& \text { PALlDRCMnE }_{\{a, b\}}=\left\{\varepsilon, a, b, a a, b b_{5}\right\} \\
& \text { subset of }\{a, b\}^{*} c\{a, b, c\}^{*}
\end{aligned}
$$

Clem:
AccEPT-somE-INPLT is
recogni zable.

$$
\text { ACCEPTAINCG }=\left\{p \sigma_{0} i \mid p \text { acceptsi }\right\}
$$

Enumercte $\{a, b\}^{t}$

$$
\begin{array}{ll}
i_{1}=\varepsilon & i_{6}=b a \\
i_{2}=a & i_{7}=b b \\
i_{3}=b & i_{8}=a a a \\
i_{4}=a a & \\
i_{5}=a b & \\
i_{5}=a &
\end{array}
$$

$$
\begin{aligned}
& \text { So } n \mapsto i_{n} \in\{c, b\}^{x} \\
& \text { real } \\
& \| N \underset{\text { bijection }}{ }\{a, b\}^{x}
\end{aligned}
$$

Phase 1: run p on $i_{1} 1$ step い $2 \vdots$ in $\quad . \quad \cdots i i^{2}$ steps and i_{z} I step

Phis 3 pun p an $i, 3$ steps on in 2 stops - on $i_{3} 1$ step

Rem 1: Our version of Python alg comer from Turing Machines

$$
\left(\mathrm{Ch} 3 \text { of }\left[s_{i p}\right]\right)
$$

so allow orly I thread of a sequential computation
Phase 1 takes $1 \quad\binom{2}{2}^{\text {(Quorate) }}$

Phase 2	"	3	$\binom{3}{2}$
Phon 3	"	6	$\left(\begin{array}{l}4 \\ 2\end{array}\right.$
Phase 4	"	10	$\binom{5}{5}$

Say i_{37} on p halts after 100 total cubic in $(37+100)$

Speed up?

Paredexes or Contrudietions!
Contw's Thm: selfureforence

$$
T=\{s \mid s \notin f(s)\}
$$

Assume $f(t)=T$ for some $t \ldots$
"I am lying" neqation self-reference

Berry Parc dux (likely of B. Russell):
"'Let n be the smallest positive integer not described by an English phrase of fewer than 500 words" fifty

Paradox: What is n ?

$$
n=10^{100}-37+101^{2}
$$

Russell's parados:
Let

es g.
$\{1,2\}$ is not an element of $\{1,2\}$
since

$$
\begin{aligned}
&\{1,2\} \neq 1 \\
&\{1,2\} \neq 2 \\
& \text { Does } T \in T ?
\end{aligned}
$$

I_{f}

$$
T \in T=\{S \mid S \notin S\}
$$

then $T \& T$ condruition
If $T \notin T$ so $T \in T$

$$
\ldots-\sim
$$

