CPSC 421/501 Sept 13,2023
Today:
Language Rec By: $\sum_{\text {ASCII }}^{*} \rightarrow \operatorname{Power}\left(\Sigma_{\text {ASCII }}^{*}\right)$
$\binom{$ Python }{ Algorithm }$\longmapsto\left(\begin{array}{l}\text { Language } \\ \text { recanguized } \\ \text { by the algovithyy }\end{array}\right)$
$p \longmapsto \operatorname{Language} \operatorname{Rec} B y(p)$
Using this + Cantor's Theorem we build a language that is unrecognizable, i.e. not recognized by any algorithm,

Home world'
You can (1) use LaTeX
(2) write clearly

Illegible homework will not be graded, such as Blue to gr of writing

USE CANVAS TO GET TO GRADSCOPE
"I don't want to belong to any club that would accept me as one of its members."

Grouch Marx
"Python" with some conventions later \& 4.2, (Ch 3) [Sip]
"Turing machine" with same conventions
\square
J "algorithm

Conventions:

- one input, string in

$$
\sum_{\text {ASCII }}^{k}
$$

- two return values "Yes"," no"
- any other program behevidr we call" loops"

Fix some conventions:
In $\sum_{\text {ASCII, some strings are in }}$ VALID-PYTHON-PROGRAMS $\subset \sum_{\text {ASTI }}^{k}$
If $p \in V A L I D-\rho<p$, then
or input $i \in \sum_{\text {ASCII }}^{*}$
a finite length $\sum_{\text {ASCII }}$ string
We ser
p accepts input $i=$ means on input i, algorithm f reaches "return("Yes")
"p accepts $i^{\prime \prime}$ means: on input i, p reaches return (yes")
"p rejects i" mans: on input i, p reaches return("no")
"plops on i" means: neither
(1) $\operatorname{nar}(2)$ 。

Fer any $p \in V A L I D \cdot p-P$,
Language Recognized By (p)

$$
\stackrel{\text { deft }}{=}\left\{i \in \sum_{A S C J}^{*} \mid \text { paccepts i }\right\}
$$

Language $\operatorname{Rec} B_{y}(p)$ is therefore a subset of $\sum_{\text {ASCII }}^{*}$, i.e. an element of Power $\left(\varepsilon_{\text {ASCII }}^{*}\right)$.
$=$ If $P \notin V A L I D-P Y T N O N-P R O G R A M$,
set

$$
\operatorname{Language} \operatorname{Rec} B_{y}(p)^{\stackrel{\text { def }}{=}}
$$

So:
Language Rec $B y$:

$$
\sum_{\text {ASCII }}^{*} \rightarrow \operatorname{Power}\left(\sum_{A S C I \digamma}^{*}\right)
$$

Eig.

$$
\begin{gathered}
(H, U, T, h, i, S \ldots,\langle C R\rangle, \ldots, \mid, e, \\
S, \cdots,),\langle C R\rangle) \in \sum_{\text {ASCII }}^{45}
\end{gathered}
$$

The answer gives "yer" a language

thant does not contain
return ("Yes")
somewhere

We say that
ノ phalts en input i"
if p on input i accepts or rejects, but does not loup
ie.
on input i, p either

$$
\begin{gathered}
\text { - returns "Yes" } \\
\text { - "no" "no }
\end{gathered}
$$

$$
=
$$

p is a decider if on $\left\{\begin{array}{c}\text { all } \\ \text { any }\end{array}\right\}$ input is p either accepts ar rejects (but does not loop)

LanguegeRec By_{y} :-

$$
\sum_{A S C I I}^{*} \longrightarrow \operatorname{Power}\left(\sum_{A S C I I}^{*}\right)
$$

i.e. $\forall p \in \sum_{\text {RSCII }}^{*}$,

Language Rec $B_{y}(p)$ is same language aer $\sum_{\text {RSCIII }}$

We soy $L \subset \sum_{\text {ASCII }}^{*}$

$$
L \in \operatorname{Power}\left(\Sigma_{\text {ASCIT }}^{*}\right)
$$

is recognizable if

$$
L=\operatorname{Languge} \operatorname{Rec} B y(p)
$$

for same $p \in \mathcal{E}_{\text {AsciI }}^{*}$
Canter's Theorem \Rightarrow

$$
\begin{aligned}
& p=\underbrace{\text { return }\left(\text { lyes" }^{\prime \prime}\right) \in \sum_{\text {DSCII }}^{*}} \\
& \operatorname{Lang} \operatorname{Rec} B y(1)=\sum_{\text {ASCII }}^{*}
\end{aligned}
$$

