CPSC 421/501 Sept 8,2023
"In every math class there is an expert on the empty set."

Heard in 1980, by
George lackey, 1916-2006

Last time:
Alphabet, symbol [letter], string [ward]

$$
\begin{aligned}
& \sum, \Sigma^{k}, \sum^{k}=\bigcup_{k=0}^{\infty} \sum^{k} \\
& \text { Set } S: \operatorname{Power}(S)=\{\text { all subsets of } S\}
\end{aligned}
$$

Today:
Define! "Decision Problem" "Algorithm
Build a problem for which there is no algorithm
Cantor's The: If $f: S \rightarrow \operatorname{Power}(S)$, then

$$
T=\{s \in S \mid \quad s \notin f(s)\}
$$

is not in the image of f.

Gencralization: Let $f: S^{\prime} \rightarrow \operatorname{Puwer}(S)$
be a function (S^{\prime}, S sets) and g: $S \rightarrow S^{\prime}$ a surjectron. Then

$$
T=\{s \in S \mid \quad s \notin f(g(s))\}
$$

is not in the imege of f.
Subsection 2.5 hendout:
Uacomputability in CPSC $421 / 501$

3 profs $\{A, B, C\}$ say
that
A thinks that $\{A, B, C\}$ are boring B $" 11$ no one is boring are born $C \| \backsim\{A, B\} "$ $\left[\begin{array}{lll}C & \| & \text { is not berry }]\end{array}\right.$

$$
\begin{aligned}
& f:\{A, B, C\} \rightarrow \operatorname{Power}(\{A, B, C\}) \\
& f(A)=\{A, B, C\}, \\
& f(B)=\varnothing, \quad f(C)=\{A, B\}
\end{aligned}
$$

$$
f(x)=\{\text { subset of }\{A, B, c\}
$$

that prof x views as boring $\}$

Let

$$
T=\{p \in\{A, B, C\} \quad s, t,
$$

p thinks that p is not boring,

$$
\begin{aligned}
& \quad \text { i.e. } p \notin f(p)\} \\
& T=\{B, C\}
\end{aligned}
$$

$$
\begin{aligned}
& A \in f(A)=\{A, B, C\} \\
& B \notin f(B)=\varnothing \\
& C \notin f(p) \\
& \text { no } \\
& \text { Why is } \quad T \neq\{A, B\} \text { yes } \\
& A(A) \\
& A \quad f(A)=\{A, B, C\} \\
& A T B=\{B, C\} \\
& A \in f(A) \quad A \notin T
\end{aligned}
$$

Map: $f: S \rightarrow S^{\prime}$
function: "

$$
\begin{aligned}
& f: \quad S \rightarrow S^{\prime} \\
& \left\{e_{p p,}, \text { Bur, Zed }, \ldots, \text { brews }\right\} \rightarrow\{(1,2, \ldots, 6\}
\end{aligned}
$$

Create student (imegrory) that cant be in $1^{\text {st }}$ row!
Student: X
X : has seen Opp ,
has not II 2001
plays guitar ado piano, more then 7 ft tall, does nut hove brown eyes,

We have
(1) Surjection $g: S \rightarrow S^{1}$

Image of $g \xrightarrow{d}$

$$
\{g(s) \mid s \in S\}
$$

the set

$$
\begin{aligned}
& \begin{array}{c}
\text { The set } \\
\text { of } \\
\text { things } \\
\text { of the }
\end{array} \quad g(s) \begin{array}{l}
\text { such } \\
\text { that }
\end{array} \quad s \in S \\
& =\text { form }
\end{aligned}
$$

Intuition: If you have a surjection $g: S \rightarrow S^{\prime}$, then

$$
\begin{aligned}
& \text { size of } S \geq \text { size of } S^{\prime} \\
& |S| \geq S^{\prime}
\end{aligned}
$$

For any $s \in S$
we ask doers $g(s)$ have property S.

Student 1 :
no $\{$ Opp, Burs, 2001, 1970, taller ne 7 at ,
yes $\{$ piano, guitw $\}$
Student $\left\lvert\, \rightarrow\left\{\begin{array}{c}\text { yes, yes } \\ \text { piano, guitar }\end{array}\right\}\right.$
Student $\left\lvert\, \mapsto\left\{\begin{array}{ll}\text { yes, } & \text { yes } \\ \text { piano, } & \text { guitw }\end{array}\right\}\right.$ an ell of 5^{\prime}

$\left.\begin{array}{l}\text { Student } \left\lvert\, \mapsto\left\{\begin{array}{ll}\text { yes } & \text { yes } \\ \text { an eli of } S^{\prime}\end{array}\right\}\right. ; \text { guitwr }\end{array}\right\}$
Make store stout X has yes to some subset of S that ensures $X=$ Student 1

$$
T=\{s \mid s \notin f(g(s))\}
$$

sit. T cannot be any thin in image (f)

$$
\begin{aligned}
& \left.\begin{array}{r}
\text { Example: } \quad\left[\begin{array}{c}
\text { This shows that Cantor's } \\
\text { Thm is a special cuse } \\
S^{\prime}=S
\end{array}\right] \\
\text { Generalied Cantar's } \\
\text { Theorem }
\end{array}\right] \\
& \text { 手: } S^{\prime} \longrightarrow S \\
& g: \int \xrightarrow{i d u t r i y} S \\
& T=\{s \mid s \notin f(g(s))\} \\
& =\{s \mid s \notin f(s)\}
\end{aligned}
$$

