CPSC $421 / 501$ Sept 6, 2023 "In mathematics you don't understand things. You just get used to them."

- John var Heumann

My alternate form:
"In mathematics it takes time for ideas and examples to sink in."

Course website:
https: Il www.cs.ubc-ca/njf /courses/421.F2023/index.html

Material: Standard 1-term into to CS Theory, The main point is that certain" problems:
(1) are provably"unsdvable" e.g, the hating problem is undecidable (2) may seem approachable, but no one knows how to solve them in polynomial time; if you could do so, then
(1) $P=N P$ (2) You win 10^{6} USB (minus applicable taxes)

$$
\begin{aligned}
& \text { e.g: SAT, 3SAT, BCOLOUR, } \\
& \text { PARTITION, }
\end{aligned}
$$

We follow textbook $[$ Sip] + handouts

Discussion! please post to piazza page.
If this fails, please email
To: jf@cs.ubc.ca
Subject: CPSC 421
or
Subject: CPSC 501
Grading:

$$
\begin{aligned}
& 421:(10 \%) \max (h, m, f)+ \\
& (35 \%) \max (m, f)+(55 \%) f
\end{aligned}
$$

$h=$ homework, $m=$ midterm, $f=$ final
501: $(80 \%)\binom{421}{$ grade }$+(20 \%)\binom{\text { Presentation }}{+ \text { Report }}^{\prime}$

Individual Homework: You must write up your own solution

Group Homework: You can make a group submission, groups ≤ 4 people

You will pass (50%) the course if on the final exam you can
(1) Write a 100% correct DFA algorithm.
(2)" " "Turing machine $"$.
100% correct \Rightarrow you also explain how these algorithms work.

1 st 2 weeks:

Uncomputability in CPSC $421 / 501$

- Alphabets, strings, power set, languages,...
- Cantor's Theorem constructs a "problem" for which there is no "algorithm
- Proof of Cantor's theorem related to many "paradoxes '
- Halting problem is undecidable
- Use Python algorithms for now, later we use Turing machines

Terminology \& Notation: $\mathbb{R}, \mathbb{Z}, \mathbb{N}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Alphabet, string, language, power set } \\
\Sigma, \Sigma^{k}, \Sigma^{*}, \text { Power }\left(\Sigma^{*}\right), \Sigma_{\text {ASCII }}, \Sigma_{\text {digits }} \\
\text { PRIMES, PALINDROME, DIV-BY-3, } . .
\end{array}\right\} \\
& \text { "Problem" " "Decision Problem" " "Language" }
\end{aligned}
$$

"Algorithms" expressed ir Python (or in C_{1} in Javascript, in APL, as Turing machines, etc.)
$\mathbb{R}=$ real numbers \mathbb{R}
$\mathbb{N}=$ natural numbers n

$$
\begin{aligned}
& =\{1,2,3, \ldots\} \\
\mathbb{Z} \geq 0 & =\{0,1,2, \ldots\} \\
\mathbb{Z} & =\{\ldots,-2,-1,0,1,2, \ldots\}
\end{aligned}
$$

(Zaillen)
Alphabet! finite, non-empty sit, after vie \sum

$$
\sum_{\text {ASCII }}=\begin{aligned}
& 256 \text { ASCII } \\
& \text { characters }
\end{aligned}
$$

Oft

$$
\Sigma=\{a\}
$$

or $\{a, b\}$
or

$$
\sum_{D_{\text {gits }}}=\{0,1, \ldots, 9\}
$$

Elements of an alphabet are symbols (letters)

$$
\sum^{k}=\underbrace{\sum x_{\ldots} \ldots \sum}_{k \text { copies }}
$$

$$
\Sigma=\{c, b\}, \Sigma^{2}
$$

$$
\begin{array}{r}
\sum^{2}=\{(a, a),(a, b),(b, a) \\
(b, b)\}
\end{array}
$$

also!

$$
\{a a, a b, b a, b b\}
$$

a a is really $(a, a) \in \sum^{2}$

$$
\left.\begin{array}{l}
\sum^{k}\left\{\begin{array}{c}
\text { strings } \\
\text { words }
\end{array}\right\} \text { of length } k \\
\Sigma^{3}=\{(a, a, b),(a, a, b), \ldots,(b, b, b)\} \\
\end{array}=\{a a c, a a b, \cdots, b b b\}\right\}
$$

$$
\begin{aligned}
& \Sigma^{*}=\bigcup_{k=0,1,2, \ldots} \sum^{k} \\
& \text { E.g. } \sum=\{a\} \\
& \Sigma^{k}=\{a\}^{*} \\
& =\{\varepsilon, a, a a, a a a, \ldots\} \\
& \left|\sum^{k}\right|=|\Sigma|^{k} \\
& \hat{i}_{\text {size }} \quad \text { so }\left|\Sigma^{0}\right|=|\Sigma|^{0}=1
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma^{2} \leftrightarrow\left\{\operatorname{meps}\{1,2\} \rightarrow \sum\right\} \\
& \Sigma^{0} \leftrightarrow\{\operatorname{meps} \phi \rightarrow \Sigma\} \\
& \Sigma^{0}=\{\varepsilon\} \text { where }
\end{aligned}
$$

ε is the "empty string"

$$
\begin{aligned}
&\{a, b\}^{\hbar} \\
&=\{\varepsilon, a, b, a b, a b, b a, b b, \\
& a a a, a c b, \ldots, b b b, \\
&a a c a, \ldots\}
\end{aligned}
$$

$$
\Sigma^{5} \times \Sigma^{7} \cong \sum^{12}
$$

cencateration

$$
\sum^{3} \times \sum^{2}=\sum^{5}
$$

Say| $\sum=\begin{gathered}i \\ \{a, b\}\end{gathered}$
$a b c \quad b b$ $a b a b b$

$$
\begin{aligned}
\sum_{b}^{0} \times \sum_{b}^{2}= & \sum^{2} \\
\varepsilon \quad a a & \varepsilon a a \\
& =a a
\end{aligned}
$$

$\Sigma^{*}=$ set of strings over \sum (cards)

If S is a set, we use
Power (S) to denote the set of call subsets of S

$$
S=\{1,2\}
$$

$\operatorname{Power}(\{1,2\})$

$$
=\{\phi,\{1\},\{2\},\{12\}\}
$$

$$
\begin{aligned}
& \operatorname{Pour}(\{1,2,3\}) \\
& =\{\varnothing, \\
& \\
& \quad\{1\},\{2\},\{3\}, \\
& \\
& \quad\{1,2\},\{1,3\},\{2,3\}, \\
& \\
& \quad\{1,2,3\}\} \\
& \\
& |\operatorname{Paver}(5)|=2^{|5|}
\end{aligned}
$$

if S is finite

Cantor's Theorem: If S is a set, and function

$$
f: S \rightarrow \operatorname{Power}(S)
$$

then the image of f is not all of $\operatorname{Powr}(5)$, specifically

$$
T=\{s|c| s \neq f(s)\}
$$

is not in the image of f,
ie. there is nod $t \in S$ sit.

$$
f(t)=T .
$$

$$
\begin{aligned}
& f . g . \\
& 1 \longmapsto\{1,2\} \\
& 2 \not\{\{1,2,3] \\
& 3 \not\{\{1,2\} \\
& 1 \in f(1)=\{1,2\} \\
& 2 \in f(2)=\{1,2,3\} \\
& 3 \notin f(3)=\{1,2\} \\
& T=\{5 \mid s \notin f(s)\}=\{3\}
\end{aligned}
$$

