(1) A word $\sigma_1 \cdots \sigma_n$ lies in L^k iff there are words $w_1, \ldots, w_N \in L$ such that

$$w_1 \cdot w_2 \cdots \cdot w_N = \sigma_1 \cdots \sigma_n.$$

If so, then

$$w_1 = \sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_{i_1}} \text{ for some } i_1 \geq 1$$

$$w_2 = \sigma_{i_1+1} \cdots \sigma_{i_2} \text{ for some } i_2 \geq i_1 + 1$$

$$
\vdots
$$

$$w_N = \sigma_{i_{N-1}+1} \cdots \sigma_{i_N} \text{ for some } i_N \geq i_{N-1} + 1.$$

This happens iff there are integers i_1, \ldots, i_N such that

$$1 \leq i_1 < i_2 < \ldots < i_{N-1} < i_N = N$$

such that the above equations (*) hold.
Hence to decide whether or not \(\sigma_1, \ldots, \sigma_n \) lies in \(L^* \), we can "guess" (by a non-deterministic TM) which of \(2, \ldots, n \) should lie in \(\{ i_1, i_2, \ldots, i_m \} \subset \{ 1, \ldots, n \} \), and then run a non-deterministic algorithm, \(M \) to check

1. if \(w_1 = \sigma_{i_1} \ldots \sigma_{i_1} \) lies in \(L \), and
2. if \(w_2 = \sigma_{i_1+1} \ldots \sigma_{i_2} \) lies in \(L \),

etc.

If \(M \) runs in time \(Cn^k \) on an input of size \(n \), then 1, 2, etc. above each, decides in time \(\leq Cn^k \). Since \(N \leq n \) we require time \(\leq Cn^k n = Cn^{k+1} \) to test membership of each of
\(w_1, \ldots, w_N\) in \(L\). The overhead for
guessing which of \(1, 2, \ldots, n\) lie in
\(\{i_1, \ldots, i_N\}\), plus the overhead for setting
up \(M\) to run on \(w_1, \ldots, w_N\) (which
is deterministic, given \(i_1, \ldots, i_N\)) take time
polynomial in \(n\). Hence our algorithm
for testing membership in \(L^*\) lies in
\(NP\).

(2) Yes. The idea is to use the
fact that for any \(i, m,\n\)
\[\sigma_i, \tau_{i+1}, \ldots, \tau_{i+m} \in L^*\text{ iff}\]
\[\left(\sigma_i, \tau_{i+m} \in L\right) \text{ or } \left(\begin{array}{c}
\text{for some } 0 \leq j \leq m-1,}
\sigma_i, \tau_{i+j}, \tau_{i+j+1}, \ldots, \tau_{i+m} \in L^*
\end{array}\right)\]
we then apply this for $m=0$, then $m=1$, ... remembering for which i,m we have

$T_i \in T_{im} \in L^*$. Here are the details.

Consider the following algorithm, with $n-1$ phases:

Phase (1): Determine which of

$\sigma_1, \sigma_2, \ldots, \sigma_n \in L^*$

by determining for $i=1, \ldots, n$, which

$\sigma_i \in L$ (since $\sigma_i \in L^*$ iff $\sigma_i \in L$).

Phase (2): Determine which of

$\sigma_1 \sigma_2, \sigma_2 \sigma_3, \sigma_3 \sigma_4, \ldots, \sigma_{n-1} \sigma_n \in L^*$

Since

$\sigma_i \sigma_{i+1} \in L^*$
if \(\sigma_i \sigma_{i+1} \in L \) or \([\sigma_i \in L^* \text{ and } \sigma_{i+1} \in L^*] \).

Phase (m): Determine which of

\[
\sigma_i \sigma_{i+1} \ldots \sigma_{i+m} \in L^*
\]

for \(i = 1, 2, \ldots, n - m \), using the fact that this happens iff

\[
\sigma_i \ldots \sigma_{i+m} \in L \quad \text{or} \quad \text{for some } 1 \leq j \leq m - 1,
\]

\[
\sigma_i \ldots \sigma_{i+j} \in L^* \quad \text{and} \quad \sigma_{i+j+1} \ldots \sigma_{i+m} \in L^*.
\]

This type of algorithm is known as "dynamic programming," probably first appeared in the work of
Rufus Isaacs and Richard Bellman, who were colleagues at RAND at the time (neither of whom acknowledged the other in their then classified technical reports).

Time complexity of the above algorithm: say that L can be decided in time $C n^k$. Then

Phase (m) requires:

$$(n+1-m) C m^k$$ time to check membership in L.

$$(n+1-m) 2(m-1)$$ time to check membership conditions in L^*, assuming time 1 for each check (which on a Turing
machine would take longer, but still polynomial time)

Estimating crudely, this would take time

\[(n+1-m)C_m k \leq C_h k + 1\]

AND

\[(n+1-m)2^{m-1} \left(\text{time to check } L^* \right)\]

\[\leq 2n^2 \left(\text{membership table} \right)\]

AND

some additional bookkeeping,

For a total (over \(n-1\) phases of)

\[\leq Cn^{k+2} + 2n^3 \left(\text{time to check table} \right) + \text{bookkeeping}\]

which polynomial in \(n\).
(3) If \(a_1 \) or \(a_2 = T \), then we can satisfy \(f \) by taking

\[
T_1 = T_2 = \ldots = T_{n-3} = f
\]

Since then

\[
a_1 \lor a_2 \lor T_3 = T,
\]

and every other term has the negation of one of \(T_2, \ldots, T_{n-3} \).

Similarly, if \(a_{n-1} \) or \(a_n = T \), then we can satisfy \(f \) by taking

\[
T_1 = T_2 = \ldots = T_{n-3} = T.
\]

Similarly, if \(a_i = T \) with \(3 \leq i \leq n-2 \) we can satisfy \(f \) by taking:
\[Z_{i-2} = T, \quad Z_{i-1} = F \text{ which makes } (-Z_{i-2} \lor a_i \lor Z_{i-1}) \text{ true, and then taking} \]
\[Z_1 = Z_2 = \ldots = Z_{i-2} = T \quad \text{and} \]
\[Z_{i-1} = Z_1 = \ldots = Z_{n-3} = F. \]

Finally, if \(a_1 \lor \ldots \lor a_n = F \), then \(a_1 = a_2 = \ldots = a_n = F \), and \(f \) reduces to
\[
\begin{align*}
f(Z_1, \ldots, Z_{n-3}) &= Z_1 \land (-Z_1 \lor Z_2) \land (-Z_2 \lor Z_3) \land \ldots \land (-Z_{n-4} \lor Z_{n-3}) \land (-Z_{n-3}) \\
\end{align*}
\]
Hence if \(f(Z_1, \ldots, Z_{n-3}) = T \), then
\[Z_1, -Z_1 \lor Z_2, \ldots, -Z_{n-4} \lor Z_{n-3}, -Z_{n-3} \]
must all be \(T \).
But then
\[z_1 = T \]
and
\[\lnot z_1 \lor z_2 = T, \text{ hence } z_2 = T \]
and similarly
\[z_3 = T, z_4 = T, \ldots, z_{n-2} = T \]
but then \(\lnot z_3 = F \). Hence \(f \) is not satisfiable.

Hence

at least one of \(a_1, \ldots, a_n \) is \(T \)

\[\iff \]

\(f \) is satisfiable.
(4) Since f is satisfiable, one of

$$g(x_2, \ldots, x_n) = f(T_1, x_2, \ldots, x_n)$$

or

$$g(x_2, \ldots, x_n) = f(F, x_2, \ldots, x_n)$$

is satisfiable. Hence if SAT is P, say SAT is decidable in time Cn^k, then in time $\leq 2Cn^k$ (plus some polynomial time overhead) we find an $a_1 = T, F$, such that $f(a_1, x_2, \ldots, x_n)$ is satisfiable. Next we find $a_2 = T, F$ such that

$$f(a_1, a_2, x_3, x_4, \ldots, x_n)$$

is satisfiable, again in time $\leq 2Cn^k$.
plus some overhead. We similarly find a_i for $i = 3, 4, \ldots, n$ such that

$$f(a_1, \ldots, a_i, x_{i+1}, x_{i+2}, \ldots, x_n)$$

is satisfiable. We wind up with $a_1, \ldots, a_n = T, f$ such that

$$f(a_1, a_2, \ldots, a_{n-1}, a_n)$$

is satisfiable, and since this expression has no variables, this means that

$$f(a_1, a_2, \ldots, a_n) = T.$$

This takes time $\leq 2Cn^k \cdot n = 2Cn^{k+1}$, plus some overhead which is clearly polynomial time.