CPSC 421/501 Homework Solutions 9
(1) A word $\sigma_{1} \ldots \sigma_{n}$ lies in L^{*} iff there are words $w_{1}, \ldots, w_{N} \in L$ such that

$$
w_{1} \circ w_{2} \circ \ldots \circ w_{N}=\sigma_{1} \ldots \sigma_{n} .
$$

If so, then

$$
A\left\{\begin{array}{l}
\omega_{1}=\sigma_{1} \sigma_{2} \ldots \sigma_{i_{1}} \text { for some } i_{1} \geq 1 \\
\omega_{2}=\sigma_{i_{1}+1} \ldots \sigma_{i_{2}} \text { for some } i_{2} \geq i_{1}+1 \\
\vdots \\
\omega_{N}=\sigma_{i_{N-1}+1} \ldots \sigma_{i_{N}} \text { for some } i_{N} \geq i_{N-1}+1 .
\end{array}\right.
$$

This happens iff these are integers i_{1}, \ldots, i_{N} such that

$$
1 \leqslant i_{1}<i_{2}<\ldots<i_{N-1}<i_{N}=n
$$

such that the above equations (*) hold.

Hence to decide whether or not $\sigma_{1} \ldots \sigma_{n}$ lies in L^{*}, we can "guess" (by a non-deterministic T.m) which of $2, \ldots, n$ should lie in $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\} \subset\{1, \ldots, n\}$, and then run a non-deterministic algorithm, M to check
(1) if $\omega_{1}=\sigma_{1} \ldots \sigma_{i_{1}}$ lies in L, and
(2) if $\omega_{2}=\sigma_{i_{1+1} \ldots} \ldots \sigma_{i_{2}}$ lies in $L_{\text {, }}$ etc.
If m runs in time $C n^{k}$ on an input of size n, then (1), (2), etc. above each, decides in time $\leq C n^{k}$. Since $N \leq n$ we require time $\leq C n^{k} n=C n^{k+1}$ to test membership of each of
w_{1}, \ldots, w_{N} in L. The overhead for guessing which of $1,2, \ldots, h$ lie in $\left\{i, \ldots, i_{N}\right\}$, plus the overhead for setting up m to run on $\omega_{1, \ldots}, w_{N}$ (which is deterministic, given $\left.i_{1,--,} i_{N}\right)$ take time polynomial in n. Hence out algorithm for testing membership in L^{*} lies in NP.
(2) Yes. The idea is to use the fact that for any i, m,

$$
\begin{array}{cl}
\sigma_{i} \sigma_{i+1} \ldots \sigma_{i+m} \in L^{*} & \text { if } \\
\left(\left(\sigma_{i-\ldots} \sigma_{i+m} \in L\right) \text { or }\left(\begin{array}{ll}
\text { for some } & a \leq j \leq m-1, \\
\sigma_{i} \ldots \sigma_{i+j}, & \sigma_{i+j+1} \ldots \sigma_{i+m} \in L^{*}
\end{array}\right)\right)
\end{array}
$$

we then apply, this for $m=0$, then $m=1, \ldots$, remembering for which i,m we have $\sigma_{i} \ldots \sigma_{i+m} \in L^{*}$. Here are the details!

Consider the following algorithm, with $n-1$ phases:

Phase (1): Determine which of

$$
\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n} \in L^{*}
$$

by determining for $i=1, \ldots, n$, which $\sigma_{i} \in L \quad\left(\right.$ since $\sigma_{i} \in L^{*}$ inf $\left.\sigma_{i} \in L\right)$.

Phase (2): Determine which of

$$
\sigma_{1} \sigma_{2}, \sigma_{2} \sigma_{3}, \sigma_{3} \sigma_{4}, \ldots, \sigma_{n-1} \sigma_{n} \in L^{*}
$$

Since

$$
\sigma_{i} \sigma_{i+1} \in L^{*}
$$

if

$$
\left(\sigma_{i} \sigma_{i+1} \epsilon L\right) \text { or } \quad\left(\sigma_{i} \in L^{*} \text { and } \sigma_{i+1} \in L^{*}\right)
$$

Phase (m): Determine which of

$$
\sigma_{i} \sigma_{i+1} \ldots \sigma_{i+m} \in L^{*}
$$

for $i=1,2, \ldots, n-m$, using the fad that this happens of
$\sigma_{i} \ldots \sigma_{i+m} \in L$ OR for some $1 \leqslant j \leqslant m-1$,

$$
\begin{aligned}
& \sigma_{i} \cdots \sigma_{i+j} \sigma L^{*} \text { and } \\
& \sigma_{i+j+1}-\sigma_{j+t} \epsilon L^{+} .
\end{aligned}
$$

This type of algorithm is known as "dynamic programming", probably first appeared in the work of

Rufus Isaacs and Richard Bellmen, who were colleagues at RAND at the time (neither of whom acknowledged the other in their then classified technical reports). Time complexity of the above algorithm: say that L can be decided in time $C n^{k}$. Then Phase (m) requires: $(n+1-m) C m^{k}$ time to check membership in L

$$
t
$$

$-(n+1-m) 2(m-1)$ time to check membership conditions in L^{*}, assuming time 1 for each check (which on a Turing
machine would take longer, but still polynomial true)
Estimating crudely, this would take time

$$
(n+1-m) C m^{k} \leqslant C n^{k+1}
$$

AND

$$
\begin{aligned}
& (n+1-m) 2(m-1)\binom{\text { time to check } L^{*}}{\text { membership table }} \\
& \leqslant 2 n^{2}\left(\begin{array}{ccc}
" & " & " \\
" & "
\end{array}\right)
\end{aligned}
$$

AND
some additional bookkeeping,
For a total (over $n-1$ phases of)

$$
\leqslant C n^{k+2}+2 n^{3}\binom{\text { time to }}{\text { check table }}+\text { bookkeeping }
$$

which polynomial in n.
(3) If a_{1} or $a_{2}=T$, then we can satify f by taking

$$
z_{1}=z_{2}=\ldots=z_{n-3}=f
$$

since then

$$
a_{1} \vee a_{2} \vee z_{3}=T
$$

and every other term has the negation of one of z_{2}, \ldots, z_{n-3}.
Similarly, if a_{n-1} or $a_{n}=T$, then we can satisfy f by taking

$$
z_{1}=z_{2}=\ldots=z_{n-3}=T .
$$

Similarly, if $a_{i}=T$ with
$3 \leqslant i \leqslant n-2$ we can satisfy f by taking:
$z_{i-2}=T, z_{i-1}=F$ which makes $\left(\neg z_{i-2} \vee a_{i} \vee z_{i-1}\right)$
true, and then taking

$$
\begin{aligned}
& z_{1}=z_{2}=\ldots=z_{i-2}=T \text { and } \\
& z_{i-1}=z_{i}=\ldots=z_{n-3}=F .
\end{aligned}
$$

Finally, if $a_{1} v \ldots v a_{n}=F$, then $a_{1}=a_{2}=\ldots=a_{n}=F$, and f reduces to

$$
\begin{aligned}
& f\left(z_{1}, \ldots, z_{n-3}\right)= \\
& z_{1} \wedge\left(\neg z_{1} \vee z_{2}\right) \wedge\left(\neg z_{2} \vee z_{3}\right) \wedge \\
& \\
& \quad \cdots\left(\neg z_{n-4} \vee z_{n-3}\right) \wedge\left(\neg z_{n-3}\right)
\end{aligned}
$$

Hence if $f\left(z_{1},-, z_{n-3}\right)=T$, then

$$
z_{1}, \neg z_{1} \vee z_{2}, \ldots, \neg z_{n-4} \vee z_{n-3}, \neg z_{n-3}
$$ must all be T.

But then

$$
Z_{1}=T
$$

and

$$
\neg Z_{1} \vee z_{2}=T \text {, hence } z_{2}=T
$$

and similarly

$$
z_{3}=T, z_{4}=T, \ldots, z_{n-3}=T,
$$

but then $\neg z_{3}=F$. Hence f is not satisfiable.

Hence
at least one of a_{1}, \ldots, a_{n} is T \Leftrightarrow f is satifiable.
(4) Since f is satisfiable, one of

$$
g\left(x_{2}, \ldots, x_{n}\right)=f\left(T, x_{2}, \ldots, x_{n}\right)
$$

OR

$$
\hat{g}\left(x_{2}, \ldots, x_{n}\right)=f\left(F, x_{2}, \ldots, x_{n}\right)
$$

is Satisfiable. Hence if SAT EP, say SAT is decidable in time $C n^{k}$, then in time $\leq 2 \mathrm{Cn}^{k}$ (plus same polynomial time overhead) we find an $a_{1}=\tau_{1} F$, such that $f\left(a_{1}, x_{2}, \ldots, x_{n}\right)$ is satisfiable. Next we find $a_{2}=T, F$ such that

$$
f\left(a_{1}, a_{2}, x_{3}, x_{4}, \ldots, x_{n}\right)
$$

is satisfiable, again in time $\leq 2 \mathrm{Cn}^{k}$
plus some overhead.
We similarly find a_{i} for $i=3,4, \ldots, n$ such that

$$
f\left(a_{1}, \ldots, a_{i}, x_{i+1}, x_{i+2}, \ldots, x_{n}\right)
$$

is satisfiable. We wind up with $a_{1, \ldots,}, a_{n}=T, f$ such that

$$
f\left(a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right)
$$

is satisfiable, and since this expression has no variables, this means that

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=T
$$

This takes time $\leqslant 2 C n^{k} \cdot n=2 C n^{k+1}$, plus some overhead wikich is clearly polynomial time.

