CPSC 421/501 Homework 6 solutions 2023 Individual Homework
(la) Since 5^{n} is an odd number for all n (indeed, $5^{\circ}=1$, and 5^{n} for $n \geq 1$ ends in a 5), for any $\sigma_{1} \ldots \sigma_{m} \in \sum_{\text {five }}^{*}$ we have

$$
\begin{aligned}
& \sigma_{1} \ldots \sigma_{m} \in L \Leftrightarrow \\
& \left(\sigma_{m} 5^{0}+\sigma_{m-1} 5^{1}+\ldots+\sigma_{1} 5^{m-1}\right) \bmod 2=0 \\
& \Leftrightarrow\left(\sigma_{m}+\sigma_{m-1}+\ldots+\sigma_{1}\right) \bmod 2=0
\end{aligned}
$$

Hence it suffices to keep track of the value of $\left(\sigma_{1}+\ldots+\sigma_{m}\right) \bmod 2$.
Since we read the input left to right, upon reading σ_{k}, knowing the value of $\left(\sigma_{1}, \ldots+\sigma_{k-1}\right) \bmod 2$, we add σ_{k} to the result, then take the result $\bmod 2$,
to determine $\left(\sigma_{1}+\ldots+\sigma_{k}\right) \bmod 2$
Noe: Your solution does nor need to be so long, but it should include all the main points, such as
(1) $\sigma_{1} \ldots \sigma_{m} \in L \Leftrightarrow\left(\sigma_{1}+\ldots+\sigma_{m}\right) \bmod 2=0$ and
(2) we can determine $\left(\sigma_{1}+\ldots+\sigma_{k}\right) m_{0} d z$ knowing $\left(\sigma_{1}+\ldots+\sigma_{k-1}\right) \bmod 2$ and $\left.\sigma_{k}\right]$
(lb) We have 2 states, $q_{\text {even }} q_{\text {odd, }}$ where upan reading $\sigma_{1} \ldots \sigma_{k}$ we have $\left(\sigma_{1}+\ldots+\sigma_{k}\right) \bmod 2=0 \quad$ (state $\left.q_{\text {even }}\right)$ OR $\left(\sigma_{1}+\ldots+\sigma_{k}\right) \bmod 2=1 \quad\left(\right.$ state $\left.q_{\text {odd }}\right)$
Furthermore, we need to
(1) reject ε,
so $\longrightarrow 0$
(2) accept O, so
(3) reject any other String beginning in 0

$$
\begin{gathered}
0,1,2,3,4 \\
0 \\
0 \\
0,1,2,3,4
\end{gathered}
$$

This yields

$$
\longrightarrow
$$

$0,1,2,3,4$
[Again, you don't have to be so wordy, but you should explain the role of qeven, God and of the extra states

needed for the special cases of $\varepsilon, 0$, and anything with leading O's.]

Group Homework 6:
$(1)(a)$ If a $D E A, M$, recognizes L_{1}, them by reversing the accepting/rejecting states we recognize the complement, $\sum^{*} \backslash L_{1}$.
(b) Since the union of two regular languages is regular (in class we explained that the operations $u, 0, *$ preserve regularity], L_{1}, L_{2} regular $\Rightarrow \sum^{*} \backslash L_{1}, \sum^{*} \backslash L_{2}$ regular $\Rightarrow\left(\Sigma^{*} \backslash L_{1}\right) \cup\left(\Sigma^{*} \backslash L_{2}\right)$ is regular

Now we use the fact that the complement of $\left(\Sigma^{*} \backslash L_{1}\right) \cup\left(\Sigma^{*} \backslash L_{2}\right)$
is $L_{1} \cap L_{2}$.
[It's OK to merely state this; a formal proof is that

$$
\left(\Sigma^{*} \backslash L_{1}\right) \cup\left(\Sigma^{*} \backslash L_{2}\right)=\left\{\omega\left(\begin{array}{c}
w \notin L_{1} o R \\
w \notin L_{2}
\end{array}\right\}\right.
$$

So the complement is

$$
\left\{\omega \mid \neg\left(\left(\omega \notin L_{1}\right) \text { or }\left(\omega \notin L_{2}\right)\right)\right\}
$$

de Morgan
(c) L_{1}, L_{2} regular \Rightarrow
$L_{1,} \sum^{*} \backslash L_{2}$ regular \Rightarrow

$$
L_{1} \wedge\left(\Sigma^{*} \backslash L_{2}\right) \text { regular } \quad(\text { part (b) })
$$

and $L_{1} \cap\left(\Sigma^{*} \backslash L_{2}\right)=L_{1} \backslash L_{2}$
[Again, it's fine to just state the last equality, but you should be able to convince yourself of this and you could write out a formal proof.]
$2(a)$ Assume L, is regular. Since $\{a\}^{*}$ is regular, then

$$
L_{1} \cap\{a\}^{k}=\left\{\begin{array}{l}
a^{n} \mid n \geq 1, n \text { is a } \\
\text { perfect } \subset \text { cube }\}
\end{array}\right.
$$

must be regular (contradicting what was discussed in class and in the handout "Non-Reguler..")
(b) Similarly, L_{1} is regular, since $L_{1} \cap\{a\}^{*}=\left\{a^{n} \mid n\right.$ is a perfect cube $\}$ is non-regular.
(c) If L is regular then

$$
L^{\prime}=L_{1} \cap\left(\{a\}^{*} b\right)=\left\{a^{n} b \mid n \text { is a perfect cube }\right\}
$$

is regular; let M be a DFA for L^{\prime}. Any accepting state, q, of M must look like

ie.

$$
\text { a has }\left\{\begin{array}{l}
\text { - one or more incoming edges } \\
\text { labelled " } b \text { " } \\
\text { - no incoming edges labelled " } a \text { " } \\
\text { - all outgoing edges lead to } \\
\text { rejecting states. }
\end{array}\right.
$$

Hence let m^{\prime} be obtained from m by
(1) deleting all edges labelled "b"
(an edge labelled " a, b " becomes labelled " a ") and (2) declaring m^{\prime} to have the new set of final states, F^{\prime},
where
$q \in F^{\prime}$ iff q has an edge
$q \xrightarrow{b}(C)$ in m
[Then $m^{\prime}=\left(Q,\{a\}, \delta^{\prime}, q_{0}, F^{\prime}\right)$ is a new DFA, where F^{\prime} is as above, and δ^{\prime} is the restriction of δ to $Q \times\{a\}$, and

Then for all $s \in\{a\}^{*}$, we easily see that $\left(\begin{array}{l}s \text { is accepted } \\ b y \\ b\end{array}\right)$ iff $\left(\begin{array}{l}s b \\ \text { is accepted } \\ b y \\ m\end{array}\right)$
Since M recognizes L^{\prime} above,
M^{\prime} recognizes $\left\{a^{n} \mid n\right.$ is a perfect cube $\}$, which is impossible.

NOTICE:

This year we did not coves the idea that if $L<\{a, b\}^{k}$ is regular, then so is L where all b 's are set to ε.

You can prove this by induction, verifying this for regular expressions of the form $\phi,\{\varepsilon\},\{\sigma\}$, and then showing that if it holds for R_{1}, R_{2}, then it also holds fer $\left(R_{1} \cup R_{2}\right),\left(R_{1} \circ R_{2}\right)$, and $\left(R_{1}^{+}\right)$. However, this idea requires Section 1.3
(3) From $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, create an NFA M^{\prime} with same alphabet \sum
(1) stane states and arrows, with directions reversed
(2) add one mare state Qextra
(3) declare qu to be the only accepting state of m^{\prime}
(4) put an E-transition from qextra to each state $q \in F$, iii. each accepting state:
Hence $m^{\prime}=\left(Q \cup\left\{q_{\text {extra }}\right\}, \Sigma, \delta^{\prime}\right.$, qextra,$\left.\{q u\}\right)$ where δ 'represents the reversed arrows and the ε-trersitions from qextra.

Example: $\Sigma=\{0,1\}$,
$L=\left\{\omega \in \sum^{*} \mid \omega\right.$ begins with a 1 or with 00$\}$

The reason this works is that if $\omega \in L$, then the path through M
can be reversed, yielding a path (one path of possibly many) through M'. Hence
$w \in L \Rightarrow w^{\text {rev }}$ is accepted by M^{\prime}.
Conversely if u has a path in M^{\prime} from $q_{\text {extra }}$ to q_{0}, then the reverse path yields a path in the DFA, beginning at q_{0} and ending in an element of F (where $\left.M=\left(Q, \varepsilon, \delta, q_{0}, F\right)\right)$ (this path steps at this element of f, since the path through M^{\prime} begins with a unique ε-transition to an element of F). Hence

$$
U \text { accepted by } M^{\prime} \Rightarrow u^{\text {rev }} \in L
$$

setting $w=u^{r e v}$, we equivalently have
$w^{\text {rev }}$ accepted by $M^{\prime} \Rightarrow w^{\prime} \Rightarrow$.
Hence

and hence M^{\prime} recognizes $L^{\text {rev. }}$.
(4) (a)

(b)

(C) Initial state $=$ all states reachable
from go with an E-transition.
Since there are no ε-arrows from q_{0},

$$
\text { initial state }=\left\{q_{0}\right\}
$$

$$
\begin{aligned}
& \left\{q_{0}\right\} \xrightarrow{a}\left\{q_{0}, q_{1}\right\} \quad\left(\begin{array}{l}
\text { since } q_{0} \stackrel{a}{\longrightarrow} q_{1} \\
\text { takes us to } q_{1} \\
\text { and there is an } \\
\text { e-transition to } q_{0} \\
\text { from } q_{0}
\end{array}\right)
\end{aligned}
$$

(Since no arrows labeled b leave qu)
$\phi \xrightarrow{a} \phi \quad \phi \xrightarrow{b} \phi \quad$ (always)
Similarly

$$
\left.\begin{array}{l}
\left\{q_{0}, q_{1}\right\} \xrightarrow{a}\left\{q_{0}, q_{1}\right\} \\
\left\{q_{0}, q_{1}\right\} \xrightarrow{b}\left\{q_{0}, q_{2}\right\} \quad\left(\begin{array}{l}
\text { only b-arrow from } \\
q_{0}, q_{1} \text { tales } \\
q_{1} \text { to } q_{2}
\end{array}\right) \\
\left\{q_{0}, q_{2}\right\} \xrightarrow{a}\left\{q_{0}, q_{1}\right\}
\end{array}\right\}
$$

Since no new sets have arisen, we can put this together

Since the final states in (b) are all of q_{0}, q_{1}, q_{2}, the final states are ant non-empty set, yielding

