(1) 6.1.1 on the handout "Non-Regular Languages..."

(a) The DFA must look like

```
q₀ → q₁ ↪ q₂ ↪ ... ↪ qₙ₀ ↪ q₀
```

Cycle length p

All states in the cycle $q₀, ..., qₙ₀+{(p-1)}$ must be rejecting, so $qₘ$ must appear before $q₀, ..., qₙ₀+{(p-1)}$

```
q₀ → q₁ ↪ q₂ ↪ ... ↪ qₙ₀ ↪ q₀
```

So $m ≤ n₀-1$, $p ≥ 1$, and

$$\# \text{ states } = n₀+p ≥ (m+1)+1 = m+2$$

(b) Similarly all states along the cycle are accepting, and $qₘ$ is rejecting, so $m ≤ n₀-1$, $p ≥ 1$ so $n₀+p ≥ m+2$.

[Alternatively: to every DFA, M, recognizing L,]
by switching the accept and reject states, we get a DFA recognizing $\Sigma^* \setminus L$.

So far L as in part (b), $\Sigma^* \setminus L$ satisfies the conditions of part (a); so if a DFA in part (a) requires at least $m+2$ states, then the same is true for part (b).}

(2) 6.1.2

(a) Say that

\[\forall n \geq n', \quad a^ne \in L \iff a^{n+m'} \in L \]

and

\[\forall n \geq n_0, \quad a^ne \in L \iff a^{n+m} \in L \]

then

\[\forall n \geq \max(n_0', n_0) \]

\[a^{n+m} \in L \iff a^ne \in L \iff a^{n+m'} \in L \]
So
\[a^{n+m} \in L \iff a^{n+m'} \in L \]

\[\iff a^{h+m+(m'-m)} \in L \]

Setting \(k = n+m \), we have

\[a^k \in L \iff a^{k+(m'-m)} \in L \]

for all \(k \) s.t. \(n = k-m \geq \max(n_0',n) \), i.e., for \(k \geq C' \), where \(C = m+\max(n_0',n) \).

Hence \(L \) is eventually \((m'-m)\)-periodic.

(b) Say that \(L \) is \(p' \)-periodic. We may write \(p' = p \cdot r + (p' \mod p) \) (where \(r = \lfloor p' / p \rfloor \))

i.e., \(p' = p \cdot r + i \) where \(0 \leq i \leq p-1 \).

Since \(L \) is \(p' \)-periodic and \(p \) periodic, we have

\[L \text{ is } \begin{cases} (1) \ p' \text{-periodic (if } p' - p \geq 1), \text{ hence } \\ (2) \ p' - 2p \text{ (if } p' - 2p \geq 1), \text{ hence} \end{cases} \]
(3) \(p' - 3p \) \(\equiv (p' - 3p \geq 1) \), hence

and (by induction on \(r \))

\((p' - r\,p) \text{ periodic } \) \((p' - r\,p \geq 1) \).

So if \(p' \mod p = i \) is one of \(1, 2, \ldots, p-1 \)

then \(L \) is \(i \)-periodic, which is impossible

since \(1 \leq i < p \) and \(p \) is the periodicity

of \(L \).

(c) If \(M \) is a DFA that recognizes \(L \),

and the cycle length of \(M \) is \(p' \), then

\(L \) must be \(p' \)-periodic. Hence (b) implies

that \(p' \) is divisible by \(p \).

(d) If \(M \) looks like
then if
\[n \geq n_0, \]
for all \(r > 0 \)
\[a^n \in L \iff a^{n+rp'} \in L \]
and
\[a^{n+p} \in L \iff a^{n+p+rp'} \in L \]

Since \(L \) is \(p \)-periodic, then for \(r \) sufficiently large \(a^{n+rp'} \in L \iff a^{n+p+rp'} \in L \).

Therefore (for all \(n \geq n_0 \))
\[a^n \in L \iff a^{n+rp} \in L. \]

Hence if \(p' > p \), we can replace the cycle of length \(p' \) in \(M \).
The new DFA has \(n_{0\text{p}} \) states, which is fewer than the original DFA (with \(n_{0\text{p'}} \)).

6.1.2 (e) If \(n_0 \) is the smallest integer with

\[n \geq n_0 \Rightarrow a^n \in L \iff a^{n+p} \in L \]

then the same is not true for all \(n \geq n_0 - 1 \), hence one of \(a^{n_0 - 1} \) and \(a^{n_0 - 1 + p} \) is in \(L \), and the other not. By (d), the smallest DFA recognizing \(L \) has cycle length \(p \),
and the path in L must be of length at least n_0. Hence the number of states is $\geq n_{opt}$ in any such DFA, and there is a DFA with n_{opt} states (whose shape is $\xrightarrow{o} \circ \leftarrow \text{path length} \uparrow p$).

Hence the DFA recognizing L with the fewest number of states has n_{opt}.

(3) 6.1.4 L has period 3, since for large n, $a^n \in L \iff (n \mod 3) = 0$. L does not have smaller period, since for all n divisible by 3, $a^n \in L$ but $a^{n+1}, a^{n+2} \notin L$.
Since $a^0 \notin L$ and $a^3 \in L$, it is not true that
\[n \geq 0 \text{ implies } a^n \in L \iff a^{n+3} \in L. \]

By contrast,
\[n \geq 1 \text{ does imply } a^n \in L \iff a^{n+3} \in L. \]

Since for $n \geq 1$, $a^n \in L$ if $(n \mod 3) = 0$ and $a^n \notin L$ if $(n \mod 3) = 1, 2$.

Hence n_0 in 6.1.2 is 1. Hence, by 6.1.2.(e), the minimum number of states is $n_0 + p = 4$.

The DFA is
\[
\begin{array}{c}
\text{The DFA} \\
\text{is} \\
\end{array}
\]

\[
\begin{array}{c}
\xrightarrow{a} q_0 \rightarrow q_1 \\
\xrightarrow{a} q_2 \\
\xrightarrow{a} q_3 \\
\end{array}
\]
The period of L can be:

1. for example $L = \Sigma^*$
2. for example $L = \{a^n \mid n \text{ is even}\}$

$2k$ for any $k \in \mathbb{N}$ with $k \geq 2$

for example

$$L = \{a^n \mid (n \mod 2k) = 0, 1, 2, 4, 6, \ldots, 2k-2\}$$

since this L is (eventually) $2k$ periodic,

but is not 2 periodic (since $a^k \notin L$ if $n \mod (2k) = 3$) and not k periodic

(since $a^n \in L$ if $n \mod (2k) = 0, 1$ but $a^n \notin L$ if $n \mod (2k) = 3$)
\[
\begin{cases}
 \text{if } k \text{ is odd} & n \mod (2k) = k \\
 \text{if } k \text{ is even} & n \mod (2k) = k + 1
\end{cases}
\]

(If \(L \) has period \(d \) and \(d \leq 2k \),
then \(d \) divides \(2k \), and therefore
\((d \text{ divides } k) \) or \((d \text{ divides } 2)\), which
are impossible since \(L \) is not \(k \)-periodic
or \(2 \)-periodic.)

\[L \text{ cannot have period } p' \text{ if } p' \text{ is odd and } p' \geq 1, \text{ for if so then for large } n, \ A^n \in L \iff A^{n+p'} \in L, \text{ and for all } n \text{ odd we have } n+p' \text{ is even and so } A^{n+p'} \in L. \text{ Hence }

A^n \in L \text{ for } n \text{ sufficiently large and odd or even} \]
hence \(L \) is eventually \(1 \)-periodic.

(Finally) \(L \) can be non-regular, i.e. the period of \(L \) may not exist, for example

\[
L = \left\{ a^n \mid \text{n even or } n = 10^k + 1 \text{ for some } k \in \mathbb{N} \right\}
\]

(i.e. \(n = 11, 101, 1001, 10001, \ldots \))

since this \(L \)

1. does not have period \(1 \) (since \(n \) odd and large, such as \(n = 10^k + 3 \) does not have \(a^n \in L \))
2. does not have an even period \(p \), since

\[
10^k + 1 + p \text{ is odd and } < 10^{k+1} + 1
\]

for any \(k \) with \(p < 10^{k+1} - 10^k = 9 \cdot 10^k \)

so \(k \) with \(k > \log_{10} (p/9) \).