CPSC 4211501 Homework Solutions 52023
(1) 6.1.1 on the handout "Non-Regular Languages...
(a) The DEA must lock like

All states in the cycle $q_{n_{0}}, \ldots, q_{n_{0}}+(p-1)$ must be rejecting, so q_{m} must appear before q_{n}.

so $m \leq n_{0}-1, p \geq 1$, and

$$
\text { \# states }=n_{c}+p \geqslant(m+1)+1=m+2
$$

(b) Similarly all states along the cycle are accepting, and q_{m} is rejecting, so $m \leq n_{0}-1, p \geq 1$ so $n_{0}+p \geqslant m+2$.
[Alternatively: to eves $D F A, m$, recognizing L,
by switching the accept and reject states, we get a $D F A$ recognizing $\sum^{*} \backslash L$. So for L as in part (b), $\sum^{*} \backslash L$ satisfies the conditions of part (a); so if a $\triangle F A$ in part (a) requires at least $m+2$ states, then the same is true for part (b)]
(2) 6.1.2
(a) Say that

$$
\forall n \geqslant n_{0}^{\prime}, \quad a^{n} \in L \Leftrightarrow a^{n+m^{\prime}} \in L
$$

and

$$
\forall n \geqslant n_{0}, \quad a^{n} \in L \Leftrightarrow a^{n+m} \in L
$$

then

$$
\begin{aligned}
\forall n & \geq \max \left(n_{0}^{\prime}, n_{0}\right) \\
& a^{n+m} \in L \Leftrightarrow a^{n} \in L \Leftrightarrow a^{n+m^{\prime}} \in L
\end{aligned}
$$

50

$$
\begin{aligned}
a^{n+m} \in L & \Leftrightarrow a^{n+m^{\prime}} \in L \\
& \Leftrightarrow a^{n+m+\left(m^{\prime}-m\right)} \in L
\end{aligned}
$$

Setting $k=n+m$, we have

$$
a^{k} \in L \Leftrightarrow a^{k+\left(m^{\prime}-m\right)} \in L
$$

for all k st. $n=k-m \geqslant \max \left(n_{0}^{\prime}, n\right)$, i.e., for $k \geqslant G$, where $C=m+\max \left(n_{j}, n\right)$, Hence L is evertually ($m^{\prime}-m$)-periodic.
(b) Say that L is p^{\prime}-periodic. We may write $p^{\prime}=p \cdot r+\left(p^{\prime} \bmod p\right) \quad\left(\right.$ where $\left.r=\left[p^{\prime} / p\right\rfloor\right)$ i.e. $\quad p^{\prime}=p \cdot r+i$ where $0 \leq i \leq p-1$.

Since L is p^{\prime}-periodic and p periodic, we have L is $\begin{cases}\text { (1) } p^{\prime}-p \text { periodic } & \left(\text { if } p^{\prime}-p \geq 1\right) \text {, hence } \\ \text { (2) } p^{\prime}-2 p \quad . \quad\left(\text { " } p^{\prime}-2 p \geq 1\right) \text {, hence }\end{cases}$
(3) $p^{\prime}-3 p \quad \because \quad\left(\cdots p^{\prime}-3 p \geq 1\right)$, hence
and (by induction on r)

$$
\left(p^{\prime}-r p\right) \text { periodic }\left(1 p^{\prime}-r p \geq 1\right)
$$

So if

$$
p^{\prime} \bmod p=i \text { is one of } 1,2, \ldots, p-1
$$

then L is i-periodic, which is impossible
since $\mid \leqslant i<p$ and p is the periodicity of L.
(c) If M is a $D F A$ that recognizes L, and the cycle length of M is p^{\prime}, then L must be p^{\prime}-periodic. Hence (b) implies that p^{\prime} is divisible by p.
(d) If M looks like

then if

$$
n \geq n_{0},
$$

for all $r>0$

$$
\text { and } \begin{array}{ll}
& a^{n} \in L \Leftrightarrow a^{n+r p^{\prime}} \in L \\
& a^{n+p} \in L \Leftrightarrow a^{n+p+r p^{\prime}} \in L
\end{array}
$$

Since L is p-periodic, then for r sufficiently large $a^{n+r p^{\prime}} \in L \Leftrightarrow a^{n+p+r p^{\prime}} \in L$.

Therefore (for all $n \geq n_{0}$)

$$
a^{n} \in L \Leftrightarrow a^{n+p} \in L
$$

Hence if $p^{\prime}>p$, we can replace the cycle of length p^{\prime} in M

by

The new $\triangle F A$ has $n_{0}{ }^{\top} p$ states, which is fewer than the original DFA (with $n_{0}+p^{\prime}$).
6.1.2(e) If n_{0} is the smallest integer with

$$
n \geq n_{0} \Rightarrow a^{n} \in L \Leftrightarrow a^{n+p} \in L
$$

then the same is not true for all $n \geqslant n_{0}-1$, hence one of $a^{n_{0}-1}$ and $a^{n_{0}^{-1+p}}$ is in L, and the other not. By (d), the smallest DFA recognizing L has cycle length P,
and the path in L must be of length at least n_{0}. Hence the number of stats is $\geq n_{0}+p$ in any such DEA, and there is a DFA with note states (whose shape
 no

Hence the DFA recognizing L with the fewest number of states has $n_{0}+p$.
(3) $6.1 .4 \quad L$ has period 3 , since for large $n, \quad a^{n} \in L \Leftrightarrow(n \bmod 3)=0$.

L does not have smaller period, since for all n dwisible by 3 ,

$$
a^{n} \in L \text { but } a^{n+1}, a^{n+2} \notin L
$$

Since $a^{0} \notin L$ and $a^{3} \in L$,
it is not true that
$n \geq 0$ implies $a^{n} \in L \Leftrightarrow a^{n+3} \in L$.
By contrast,
$n \geq 1$ does imply $a^{n} \in L \Leftrightarrow a^{n+3} \in L$
Since for $n \geq 1, \quad a^{n} \in L$ if $(n \bmod 3)=0$ and $a^{n} \notin L$ if $(n \bmod 3)=1,2$.

Hence n_{0} in 6.1 .2 is 1. Hence, by 6.1.2.(e), the minimum number of states is $n_{0}+p=4$.

(4) $6,1.5$

The period of L can be:
(1) for example $L=\Sigma^{*}$
(2) for example $L=\left\{a^{n} \mid n\right.$ is even $\}$
(2k) for any $k \in \mathbb{N}$ with $k \geq 2$
for example

$$
L=\left\{a^{n} \mid(n \bmod 2 k)=0,1,2,4,6, \ldots, 2 k-2\right\}
$$

since this L is (eventually) $2 k$ periodic, but is not 2 periodic (since $a^{n} \neq L$ if $n \bmod (2 k)=3)$ and not k periodic (since $a^{n} \in L$ if $n \bmod (2 k)=0,1$ but $a^{h} \notin L$ if

$$
\begin{cases}n \bmod (2 k)=k & \text { if } k \text { is odd } \\ n \bmod (2 k)=k+1 & \text { if } k \text { is even }\end{cases}
$$

(If L has period d and $d<2 k$, then d divides $2 k$, and therefore (d divides k) or (d divides 2), which are impossible since L is not k-periodic or 2-periodic.)

L cannot have period p^{\prime} if p^{\prime} is odd and $p^{\prime}>1$, for if so then for large $n, \quad a^{n} \in L \Leftrightarrow a^{n+p^{\prime}} \in L$, and for all n odd we have $n+p^{\prime}$ is even and so $a^{n+p^{\prime}} \in L$. Hence $a^{n} \in L$ for n sufficiently large and odd ar even
hence L is eventually 1 -periodic.
(Finally) L can be non-regular, i.e. the period of L may not exist,
for example

$$
L=\{a^{h} \mid n \text { even or } \underbrace{\left.n=10^{k}+1 \text { for some } k \in \mathbb{N}\right\}}_{(\text {i.e. } n=11,101,1001,10001, \ldots)}
$$

since this L
(1) does not have period I (since n odd and large, such as $n=10^{k}+3$ does not have $a^{n} \in L$)
(2) does not have an ever period p, since $10^{k}+1+p$ is odd and $<10^{k+1}+1$
for any k with $p<10^{k+1}-10^{k}=9 \cdot 10^{k}$
so k with $k>\log _{10}(p \mid q)$.

