CPSC $421 / 5012023$ Homework 4 Solutions
7.3 .2 (b)

If Geddy blames themself: then Geddy is not a person who blames themself. Hence Geddy is not blamed by Geddy. Hence Geddy is not blamed by themself, a contradiction.

If Geddy is not blamed by, themetf: then Geddy is a person who blames themself. Hence Geddy is blamed by Geddy. Hence Geddy is blamed by themself, a contradiction.
(2) The algorithm: from the initial state, q_{0}, transition to a group of 2 states, say $q_{a \ldots a}$ and $q_{a \ldots b}$, according to whether the last symbol read is, respectively, "a" or "b".

If the input ends when are in state $q_{a \ldots a}$, then the first and last symbol are the same (both " a "), so the input lies in L and sc $q_{a \ldots a}$ is an accepting state. Similarly, $q_{a . . b}$ is a rejecting state.

Similarly if the first symbol is a "b," with a group of 2 other states, say $q_{b \ldots b}$ and $q_{b \ldots a}$.

Hence a $D F A$ that recognizes L is

Note: You can make qu accepting if you like, since it is unclear if $\varepsilon \in L$ or $\varepsilon \notin L$. So

b
y
etc.
is also OK.

3 (a) Say that $n=7_{p}+a$ and $m=7_{q}+b$
for some $a, b \in\{0,1, \ldots, b\}$ and integers p, q.
Then

$$
\begin{aligned}
& 10 m+n=10(7 q+b)+7 p+a \\
& =7(10 q+b+p)+3 b+a
\end{aligned}
$$

Hence

$$
(10 m+n)-(3 b+a) \text { is divisible by, } 7
$$

so

$$
(10 m+n) \bmod 7=(3 b+a) \bmod 7
$$

(b) Let $Q=\left\{q_{0}, q_{0}^{\prime}, q_{1}^{\prime}, \ldots, q_{7}^{\prime}\right\}$, where
q_{0} is the initial state (which we reject, since $\varepsilon \notin L$) and for $i=0,1, \ldots, 6, q_{i}^{\prime}$ means that if w is the input seen until this point, then $w \bmod 7=i$ (when $\omega \neq \varepsilon$) (and w may have leading zeros, Then

$$
\delta\left(q_{0}, i\right)=q_{i \bmod 7}^{\prime} \quad(i=0,1, \ldots, 9)
$$

takes us to the correct state upon reading the first input symbol, and by part (a), for $a=0,1, \ldots, 6$ and $n=0,1, \ldots, 9$, the formula

$$
\delta\left(q_{a}^{\prime}, n\right)=q_{(3 a+n) \bmod 7}^{\prime}
$$

takes an input of the form wo where $\omega \bmod 7=a$ and $\sigma \in\{0,1, \ldots, 9\}$ and transitions to the correct value of $\omega \sigma \bmod 7$. Hence $Q=\left\{q_{0}, q_{0}^{\prime}, q_{1}^{\prime}, \ldots, q_{6}^{\prime}\right\}, \quad \sum, \delta$ as above initial state q_{0}, and $F=\left\{\begin{array}{l}q_{0}^{\prime}\end{array}\right\}$ is such a $D F A$ (i.e. the input is divisible by 7 iff the input is taken to q_{0}^{\prime}).
(c) (i) if suffices to make q_{0} accepting,
i.e. take $F=\left\{q_{0}, q_{0}^{\prime}\right\}$, since the $D F A$ is taken to state q_{0} by an input iff the input equals ε.
(ii) One can "merge" q_{0} and q^{\prime} ', that is let $Q=\left\{q_{0}^{\prime}, q_{1}^{\prime}, \ldots, q_{6}^{\prime}\right\}$ with q_{0}^{\prime} the initial state, q_{0}^{\prime} the only accepting state, and to restrict δ as above to states $q_{0}^{\prime}, \ldots, q_{6}^{\prime}$, i.e.

$$
\delta\left(q_{a}^{\prime}, n\right)=q_{(3 a+n) \bmod 7}^{\prime}
$$

4 (a) Similarly to Problem (3), we have

$$
(2 m+n) \bmod 3=(2(m \bmod 3)+(n \bmod 3)) \bmod 3
$$

Hence, similarly to Problem (3), we can take $Q=\left\{q_{0}, q_{0}^{\prime}, q_{1}^{\prime}, q_{2}^{\prime}\right\}, F=\left\{q_{0}^{\prime}\right\}$ (the sole accepting
q_{0} the initial state, and

$$
\begin{aligned}
& \delta\left(q_{0}, n\right)=q_{n \bmod 3}^{\prime} \\
& \delta\left(q_{m, n}^{\prime}\right)=q_{(2 m+n) \bmod 3}^{\prime}
\end{aligned}
$$

The depiction of this DFA as a labelled graph

4(b) Similarly to Problem (3), we can now "merge q_{0} and $q_{j}^{\prime} "$ giving

(c) we must now reject any string beginning with a O expect O itself.
Hence we take the DFA in (a) and change the transtion from q_{0} to Gd to a separate "branch" of the $^{\prime}$ DFA:

hence the complete DFA is therefore

(5) Let $\left(Q, \Sigma_{\text {bits }}, \delta, 9_{0}, F\right)$ be a DFA recognizing L^{\prime}.

Since some elements of $\sum_{\text {bits }}^{*}$ lie in L^{\prime}, i.e. $L^{\prime} \neq \phi, Q$ must contain an accepting state. Similarly, since $L^{\prime} \neq \Sigma_{\text {bits }}^{*}, ~ Q$ must contain a rejecting state.

If $|Q|=2$, then $Q=\left\{q_{\text {acc }}, q_{\text {re j }}\right\}$ where $q_{\text {acc }}$ is accepting and $q_{r_{e j}}$ is rejecting. Since $\varepsilon \in L$, ac is also the initial state; in other words, the DFA so far looks like:

since $O \in L^{\prime}$ and $1 \notin L^{\prime}$, the arrows from ac, the initial state, must be

Hence the input 1ω, for any $\omega \in \sum_{\text {bits }}^{*}$, is taken to Grej after reading the symbol L^{\prime}. Since $10 \notin L^{\prime}$ and $\| \in L^{\prime}$, the arrows from there must be

Hence the DFA must be

But this DFA accepts the string 101, which (is binary for 5 and) does not lie in L^{\prime}. Hence this DFA does not recognize L^{\prime}.

Hence our assumption that some DFA with 2 states (or fewer) recognizes L' gives us a contradiction.
[Remark: This kind of reasoning will be made systematic when we learn the My,hill-Nerode theorem?

