Individual: 7.2.25 (d, g, j)

7.2.5 (d) False: ACCEPTANCE is undecidable but is recognizable.

(g) True: if p recognizes L_1, and q recognizes L_2, on input i we can run p and q "in parallel," i.e.

\[
\begin{align*}
\text{Phase 1} & \quad - \text{simulate } p \text{ on input } i \text{ for } 1 \text{ step} \\
\text{Phase 2} & \quad - \quad q \quad \ldots \\
\text{Phase 3} & \quad - \text{simulate } p \quad \ldots \quad 2 \text{ steps} \\
\text{Phase 4} & \quad - \quad q \quad \ldots \quad 2 \text{ steps} \\
& \quad \quad \text{etc.,} \\
\end{align*}
\]

[If any phase ends early, then we proceed to the next phase.]

Whenever p or q accepts i, then we accept i.

If p or q accepts i, then the above algorithm eventually accepts i; if neither p nor q accepts i, then this algorithm never ends, so this algorithm does not accept i. Hence this algorithm
recognizes $L_1 \cup L_2$.

(i) False: ACCEPTANCE is recognizable, and

$$\Sigma^* \setminus \text{ACCEPTANCE}$$

$$= \text{NON-ACCEPTANCE} \cup L$$

where

$$L = \left\{ \text{strings not of the form } p \sigma_0 i \right\}$$

$$= \left\{ \text{strings without a } \sigma_0 \right\}$$

$$\cup \left\{ p \sigma_0 i \mid p \text{ has no } \sigma_0 \text{ but is not a valid Python program} \right\}$$

which is decidable (see class on Sept 22)

So ACCEPTANCE $\cup L$ is recognizable (see part (g) above), but

NON-ACCEPTANCE = $\Sigma^* \setminus (\text{ACCEPTANCE} \cup L)$

is unrecognizable.
7.2.26 \((a, b, d, f)\) (Gray)

(a) **Decidable** (and therefore recognizable): a "debugging" or "universal" Python program can simulate \(p\) on input \(i\), for any finite number of steps.

(b) **Recognizable but undecidable**: recognizable since we can simulate \(p\) on input \(i\), and if the simulation stops then we accept \(p\sigma_i\) iff the simulation ends with \(p\) rejecting \(i\) (i.e. we negate the result of \(p\) on input \(i\)).

(We also reject any input not of the form \(p\sigma_i\).)

This algorithm accepts a string iff it is of the form \(p\sigma_i\) where \(p\) (is a valid Python program that rejects \(i\)).

Undecidable: if it were decidable, we could decide the language
\[\text{ACCEPTANCE } = \{ \sigma \sigma_0 i \mid p \text{ accepts } i \} \]

by taking an input \(p \sigma_0 i \) with \(p \) a valid Python program, forming \(q \) that works like \(p \) but negates the result of \(p \), and then seeing if \(q \sigma_0 i \) lies in the language \(\{ q \sigma_0 i \mid q \text{ rejects } i \} \). This would decide \(\text{ACCEPTANCE} \), which is impossible.

(d) \underline{Unrecognizable}: Let \(L_1 \) denote this language, and \(L_2 = \{ \text{strings not of the form } p \sigma_0 i \text{ with } p \text{ a valid Python program} \} \).

If \(L_1 \) were recognizable, then since \(L_2 \) is recognizable, then \(L_1 \cup L_2 \) would be recognizable. But since
\[\Sigma_{\text{ASCII}}^* \setminus (L_1 \cup L_2) = \text{ACCEPTANCE} \]

is recognizable, both

\[L_1 \cup L_2 \text{ and } \text{ACCEPTANCE} \]

would be decidable \([\text{since in class we proved that } L \text{ and } \Sigma_{\text{ASCII}}^* \setminus L \text{ recognizable } \Rightarrow \text{they are both decidable}]. \]

This would imply that \(\text{ACCEPTANCE} \) is undecidable, which is impossible.

(f) Recognizable, since we can list the elements of \(\Sigma_{\text{ASCII}}^* \) as \(i_1, i_2, i_3, \ldots \).

We can run the algorithm

Phase 1: simulate \(p \) on \(i_1 \) for one step

Phase 2: \(\ldots \ldots \ldots \ldots \) 2 steps, and \(i_2 \) for one step

(See class notes and the next homework problems)
and stop at Phase k and accept $p_{0,i}$ if two inputs i_1, \ldots, i_k are accepted (in the number of steps allowed). This algorithm accepts $p_{0,i}$ iff p accepts at least 2 of i_1, i_2, \ldots, i.e. at least 2 inputs.

Undecidable: If this language, L, were decidable, then the following algorithm would decide ACCEPTANCE (with yields a contradiction):

given an input:

1. check if it is of the form $p_{0,i}$ with p a valid Python program, if so:

2. create a Python program q that works like p except that its input variable — once set by p — is immediately
This program q (which depends on p and i)
- accepts all inputs if p accepts i
- does not accept any input if p does not accept i.

Hence

$q \in L \iff p$ accepts i.

Hence if L is decidable, then there is a decider that recognizes ACCEPTANCE, which is impossible.
(2, Group Homework)

(a) If \(L \subseteq \Sigma_{\text{ASCII}}^* \) is recognizable, then in class we showed

\[\Sigma_{\text{ASCII}}^* \setminus L \text{ is recognizable } \Rightarrow L \text{ is decidable} \]

Hence, the equivalent contrapositive statement is

\[L \text{ is undecidable } \Rightarrow \Sigma_{\text{ASCII}}^* \setminus L \text{ is unrecognizable}. \]

(b) 7.2.26(g)

If \(L = \{ p \mid p \text{ accepts all inputs} \} \), then

\[\Sigma_{\text{ASCII}}^* \setminus L = L_1 \cup L_2 \text{, where} \]

\[L_1 = \{ p \mid p \text{ is a valid Python program} \mid p \text{ accepts at least one input} \} \]

= \text{ACCEPTS_SOME_INPUT} \text{ from class}

\[L_2 = \{ p \mid p \text{ is not a valid Python program} \}, \text{which we explained is decidable in class} \]
If L were recognizable, then since L_1 and L_2 are recognizable,

$$L \text{ and } \sum_{\text{All } w}^* \setminus L = L_1 \cup L_2 \text{ would both be recognizable,}$$

hence both would be decidable. Hence $L_1 \cup L_2$ would be decidable; since L_2 would be decidable, so would be L_1.

But the same argument as in 7.2.26(f) above shows that L_1 is undecidable.

Hence we would get a contradiction.

Hence L is unrecognizable.
The input \(i_e \) would be accepted after \(m \) steps in Phase \(l+m \), but not before. For all \(k \in \mathbb{N} \), Phase \(k \) takes \(1+2+\ldots+k \) steps \(= \binom{k+1}{2} \) steps.

Hence we run Phases \(1, 2, \ldots, l+m-1 \) without an acceptance, and sometime during Phase \(l+m \) we stop. Hence the algorithm takes:

- at least \(\binom{2}{2} + \cdots + \binom{l+m}{2} \) steps

AND

- at most \(\binom{2}{2} + \cdots + \binom{l+m}{2} + \binom{l+m+1}{2} \) steps.

Since

\[
\sum_{k=2}^{l+m} \binom{k+1}{2} = \binom{l+m+1}{3} = \frac{(l+m+1)(l+m)(l+m-1)}{6}
\]

\[
= \frac{(l+m)^3 - (l+m)}{6} = \frac{1}{6} (l+m)^3 + O(1)(l+m),
\]

and since \(\binom{l+m+1}{2} = \frac{(l+m)^2 + (l+m)}{2} = O(1)(l+m)^2 \),
the total number of steps is bounded above by \(\frac{1}{6} (l+m)^2 + O(1) (l+m)^2 \)
and below by \(\frac{1}{6} (l+m)^2 + O(1) (l+m) \)

\[= \frac{1}{6} (l+m)^2 + O(1) (l+m)^2. \]

(b) Similarly, this algorithm runs at least to all phases \(1, \ldots, k-1 \), where \(k = \max(l,m) \) and some part of Phase \(k \) (or none of Phase \(k \))

Hence the number of steps is

\[1 + 2^2 + \ldots + (k-1)^2 + O(1) k^2 \]

\[= \frac{(k-1)k(2k-1)}{6} + o(1) k^2 = \frac{1}{3} k^3 + O(1) k^2 \]

\[= \frac{1}{3} \left(\max(l,m) \right)^3 + O(1) \left(\max(l,m) \right)^2 \]
(c) Similarly this algorithm runs for
\[
1 + 5^2 + (5-2)^2 + \ldots + (5(k-1))^2 + \mathcal{O}(k^2)
\]
\[
= 25 \left(\frac{1}{3} k^3 + \mathcal{O}(k^2) \right) + \mathcal{O}(k^2)
\]
\[
= \frac{25}{3} k^3 + \mathcal{O}(k^2)
\]
where \(k = \frac{\max(l,m)}{5} + \mathcal{O}(1) \).

Hence this algorithm runs for
\[
\frac{25}{3} \left(\frac{\max(l,m))^3}{125} + \mathcal{O}(1) \frac{\left(\max(l,m) \right)^2}{\max(l,m)}
\]
\[
= \frac{1}{3} \cdot \frac{1}{5} \left(\max(l,m) \right)^3 + \mathcal{O}(1) \left(\max(l,m) \right)^2
\]

(d) Similarly, for any \(k \in \mathbb{N} \), if Phase \(k \) runs
\(1, \ldots, i_{B_k} \) for \(B_k \) steps,
the total number of steps is
\[\frac{1}{3} \frac{1}{B} \left(\max(l, m) \right)^2 + O(1) \left(\max(l, m) \right)^2 \]

[You might notice that O(1) above depends on B, and, in fact, grows with B as B \to \infty...]

Hence, for any \(C > 0 \) we may choose \(B \) with \(\frac{1}{3B} < C \) to get an algorithm running in
\[\leq C \left(\max(l, m) \right)^2 + O(1) \left(\max(l, m) \right)^2 \] steps.
(4c) Let Phase\(k\) run \(p\) on each of
\(\{1, 2, \ldots, 2^k\}\) for \(2^k\) steps. Then this
algorithm runs at most \(\log_2(\max(l, m)) + 1\)
phases. Since Phase \(k\) takes \((2^k)^2\) steps, the total steps in Phases \(1, \ldots, k\) is

\[
1 + 2^2 + 4^2 + \ldots + (2^k)^2
\]

\[=
1 + 4 + 4^2 + \ldots + 4^k = \frac{4^{k+1} - 1}{4 - 1} = O(4^k).
\]

For \(k \leq \log_2(\max(l, m)) + 1\) we have

\(2^k \leq 2 \max(l, m)\) and so \(4^k = O(1)(\max(l, m))^2\)

Hence the total number of steps needed
is \(O(1)(\max(l, m))^2\)
(4b) Let $B \in \mathbb{N}$, and consider inputs i_1, i_2, \ldots, i_B. The algorithm must at some point run p on each of i_1, i_2, \ldots, i_B for at least B steps; let i_a, with $1 \leq a \leq B$, be the last element of $\{i_1, \ldots, i_B\}$ which the algorithm runs for at least B steps. Then if p accepts i_a after B steps, then the algorithm must have run for at least B^2 steps. Since

$$B = \max(a, B),$$

this algorithm has run for at least

$$\left(\max(a, B)\right)^2$$

steps. Hence for any value B, there is a
is a value of \(l,m \) such that

\[B = \max(l,m) \quad (\text{namely } l=a, m=B \text{ above}), \]

such that the algorithm runs for at least \((\max(l,m))^2\) steps.

So you can take \(c=1 \) by this argument.

Can you find a value \(c>1 \) such the algorithm must run for at least \(c(\max(l,m))^2 \) steps, at least for infinity many values of \(B=\max(l,m) \)??

The algorithm in part (a) shows that

\[c = 4 \times \frac{4}{3} = \frac{16}{3} \]

is the best possible lower bound...