CPSC $421 / 501$ Fall 2023 Homework 3 Solving Individual: $\dot{7} .2 .25(d, g, j)$
7.2.5 (d) False: ACCEPTANCE is undecidable but is recognizable.
(g) True: if p recognizes L_{1}, and q recognizes L_{2}, on input i we can run p and a "in parallel", ie.
$\left\{\begin{array}{l}\text { Phase 1 - simulate } \quad p \text { on input i } \\ \text { phase } 2\end{array}\right.$

If p or q accepts i, there the above algorithm eventually accepts i; if neither p nor q accepts i, then this algorithm never ends, so this clgorithm does not accept i. Hence this algorithm
recognizes $L_{1} \cup L_{2}$.
(j) False: ACCEPTANCE is recognizable, and

$$
\begin{aligned}
\sum^{*} & \backslash \operatorname{ACCEPTANCE} \\
& =\operatorname{NON-ACCEPTANCE} \cup L
\end{aligned}
$$

where
$L=\left\{\begin{array}{l}\text { strings not of the form } p \sigma_{0} i \\ \text { where } p \text { is a valid Python program }\end{array}\right\}$

$$
=\left\{\text { strings without a } \sigma_{0}\right\}
$$

$\cup\left\{p \sigma_{0} i \mid p\right.$ has no σ_{0} but is not a valid Python Program $\}$

Which is decidable (see class on Sep 22)
So ACCEPTANCE UL is recognizable (see part (g) above), but

$$
\text { NON-ACCEPTANCE }=\sum^{*} \backslash(\text { ACCEPTANCE } \cup L)
$$

is unfecognizable.
$7.2 .26 \quad(a, b, d, f) \quad\left(\right.$ Group $\left._{p}\right)$
(a) Decidable (and therefore recognizable): a "debugging" or "universal" Python program can simulate p on input; far any finite number of steps.
(b) Recognizable but undecidable: recognizable since we can simulate p an input i, and if the simulation stops then we accept $p \sigma_{\jmath} j$ iff the simulation ends with p rejecting i (ie. we negate the result of p on inpuli). (We also reject any input not of the form $p \sigma_{0} i$. .) This algorithm accepts a string iff it is of the form $p \sigma_{d} i$ where p (is a valid Python program that rejeds i).
Undecidable: if it were decidable, we could decide the language

$$
\text { ACCEPTANCE }=\left\{p \sigma_{0} i \mid p \text { accepts } i\right\}
$$

by taking an input $p \sigma_{j}$ i with p a valid Python program, forming q that works like p but negates the result of p, and then seeing if $q \sigma_{d} i$ lies in the language $\left\{q \sigma_{0} i \mid q\right.$ rejects $\left.i\right\}$. This would decide ACCEPTANCE, which is impossible.
(d) Unrecognizable: Let L, dense this language, and $L_{z}=\{$ strings not of the form $p \sigma_{j}$ with p a valid Plithen program $\}$.

If L, were recognizable, then since L_{2} is recognizable, then $L_{1} \cup L_{2}$ would be recognizable. But since

$$
\sum_{\text {AsciI }}^{t} \backslash\left(L_{1} v L_{2}\right)=\operatorname{AccEPTANCt}
$$

is recognizable, both

$$
L_{1} \cup L_{2} \text { and ACCEPTANCE }
$$

wold be decidable [since in class we proved that L find $\sum^{*} L$ recognizable \Rightarrow they are boil decidable]. This would imply that ACCEPTANCE is undecidable, which is impossible.
(f) Recognizable, since we can list the elements of $\sum_{\text {ASCII }}^{*}$ as $i_{1}, i_{2}, i_{3}, \ldots$,

We can run the Qlgorithm
Phase 1: simulate p on i, for one step
Phase 2: "." " "2 steps, and it for one , step
(See class notes and the next homework problems)
and stop at Phase k and accept $p \sigma_{0} i$ if two inputs $i_{1, \ldots,}, i_{k}$ are accepted (in the number of steps allowed). This algorithm accepts $p \sigma_{j} i$ iff p accepts at least 2 of $i_{1}, i_{2, \ldots}$, i.e. at least 2 inputs.
Undecidable: If this language, L, were decidable, then the following algorithm would decide ACCEPTANCE (with yields a (contradiction):
given an input;
(1) check if it is of the form $p \sigma_{0} i$ with p a valid Python program, if so:
(2) create a Python program q that works like p except that its input variable once set by $p-$ is immediately,
(overwritten and) set equal to i. This program q (which depends on p and)
AND - accepts all inputs if p accepts i

- does not accept any input if p does nd accept i.

Hence

$$
q \in L \quad \Longleftrightarrow \quad p \text { accepts } i
$$

Hence if L is decidable, then there is a decider that recognizes ACCEPTANCE, which is impossible.
(2, Group Homework)
(a) If LC $\sum_{A S C I L}^{k}$ is recognizable, then in class we shourd
$\sum_{\text {Ares }}^{*} L$ is recognizable $\Rightarrow L$ is decidable
Hence, the equivalent contrapositive statement is L is undecidable $\Rightarrow \sum_{\text {Ascijl }}^{*} \backslash L$ is unrecognizable.
(b) $7.2 .26(\mathrm{~g})$

If $L=\{p \mid$ paccepts all inputs $\}$, then
$\left.\sum_{\text {AscIi }}^{4}\right\rangle L=L_{1} \cup L 2$, where
$L_{1}=\left\{\begin{array}{l|l}p \text { is a valid Python program } & p \text { accepts at least } \\ \text { are inpour }\end{array}\right\}$
= ACCEPTS_SOME_INPUT from class
$L_{2}=\{p$ is not a valid P y then program $\}$, which we explained is decidable in class

If L were recognizable, then since L_{1} and L_{2} are recognizable,
L and $\sum_{\text {ascus }}^{*} \backslash L=L_{1} v L_{2}$ would bath be recognizable,
hence both would be decidable. Hence $L_{1} \cup L_{2}$ would be decidable; since L_{2} wail d be decidable, so would be L_{1}.

But the same argument as in 7.2.26(f) above shows that $L_{\text {, }}$ is undecidable.

Hence we would get a contradiction.
Hence L is unrecognizable.
(3 , Grape Homework) (a)
The input i_{l} would be accepted after m steps in Phase $l+m$, but not before. For all $k \in \mathbb{N}$ Phase k takes $1+2+\ldots+k$ steps $=\binom{k+1}{2}$ steps.

Hence we run Phases $1,2, \ldots, l+m-1$ without an acceptance, and sometime during Phase b tm we stop. Hence the algorithm takes!
-at least $\binom{2}{2}+\ldots+\binom{l+m}{2}$ steps
AND

- at most $\binom{2}{2}+\ldots+\binom{l+m}{2}+\binom{l+m+1}{2}$ steps.

Since

$$
\begin{aligned}
& \binom{2}{2}+\ldots+\binom{l+m}{2}=\binom{l+m+1}{3}=\frac{(l+m+1)(l+m)(l+m-1)}{6} \\
& =\frac{(l+m)^{3}-(l+m)}{6}=\frac{1}{6}(l+m)^{3}+O(l)(l+m)
\end{aligned}
$$

and since $\binom{l+m+1}{2}=\frac{(l+m)^{2}+(l+m)}{2}=O(1)(l+m)^{2}$,
the total number of steps is bounded above by $\frac{1}{6}(l+m)^{2}+O(1)(l+m)^{2}$ and below by

$$
\begin{aligned}
& \frac{1}{6}(l+m)^{2}+O(1)(l+m) \\
= & \frac{1}{6}(l+m)^{2}+O(1)(l+m)^{2}
\end{aligned}
$$

(b) Similarly, this algorithm runs at least to all Phases $\left(, \ldots, k^{-1}\right.$, where $k=\max (\ell, m)$ and some part of Phase k (or none of Phase k) Hence the number of steps is

$$
\begin{aligned}
& 1+2^{2}+\ldots+(k-1)^{2}+O(1) k^{2} \\
= & \frac{(k-1) k(2 k-1)}{6}+O(1) k^{2}=\frac{1}{3} k^{3}+O(1) k^{2} \\
= & \frac{1}{3}(\max (l, m))^{3}+O(1)(\max (l, m))^{2}
\end{aligned}
$$

(C) Similarly this algorithm runs for

$$
\begin{aligned}
& 1+5^{2}+(5-2)^{2}+\ldots+(5(k-1))^{2}+O\left(k^{2}\right) \\
= & 25\left(\frac{1}{3} k^{3}+o\left(k^{2}\right)\right)+O\left(k^{2}\right) \\
= & \frac{25}{3} k^{3}+O\left(k^{2}\right)
\end{aligned}
$$

where $k=\frac{\max (\ell, m)}{5}+O(1)$.
Hence this algorithm runs for

$$
\begin{aligned}
& \frac{25}{3} \frac{(\max (l, m))^{3}}{125}+O(1)(\max (l, m))^{2} \\
= & \frac{1}{3} \cdot \frac{1}{5}(\max (l, m))^{3}+O(1)(\max (l, m))^{2}
\end{aligned}
$$

(d) Similarly, for any $B \in \mathbb{N}$, if Phase k runs i, ,.., ib k for Bk steps,
the total number of steps is

$$
\frac{1}{3} \frac{1}{B}(\max (l, m))^{2}+O(1)(\max (l, m))^{2}
$$

[You might notice that $O(1)$ above depends on B, and, in fact, grows with B as $B \rightarrow \infty, \ldots$]

Hence, for any $c>0$ we may choose B with $\frac{1}{3 B}<C$ to get an algorithm running in

$$
\leqslant c(\max (l, m))^{2}+O(1)(\max (l, m))^{2} \quad \text { steps. }
$$

(4a) Let Phase run p on each of $i_{1}, i_{2}, \ldots, i_{2^{k}}$ for 2^{k} steps. Then this algorithm runs at $\operatorname{most} \log _{2}(\max (l, m))+1$ phases. Since Phase k takes $\left(2^{k}\right)^{2}$ steps, the total steps in Phases $1, \ldots, k$ is

$$
\begin{aligned}
& 1+2^{2}+4^{2}+\ldots+\left(2^{k}\right)^{2} \\
= & 1+4+4^{2}+\ldots+4^{k}=\frac{4^{k+1}-1}{4-1}=O\left(4^{k}\right)
\end{aligned}
$$

For $k \leqslant \log _{2}(\max (l, m))+1$ we have $2^{k} \leqslant 2 \max (l, m)$ and so $4^{k}=O(1)(\max (l, m))^{2}$
Hence the total number of steps needed is $O(1)(\max (\ell, m))^{2}$
(4b) Let $B \in \mathbb{N}$, and consider inputs $i_{1}, i_{2}, \ldots, i_{B}$.
The algorithm must at some pant run p on each of $i_{1}, i_{2}, \ldots, i_{B}$ for at least B steps; let i_{a}, with $1 \leq a \leq B$, be the last element of $\left\{i_{1}, \ldots, i_{B}\right\}$ which the algorithm runs for at least B steps. Then if p accepts i_{a} after B steps, then the algorithm must have run for at least B^{2} steps. Since

$$
B=\max (a, B)
$$

this algorithm has run for at least

$$
(\max (a, B))^{2} \text { steps }
$$

Hence for any value B, there is a
is a value of l, m such that

$$
B=\max (l, m) \quad \text { (namely } l=a, m=B
$$

above), such that the algorithm runs for at least $(\max (l, m))^{2}$ steps.
[So you can take $c=1$ by this argument.]
[Can you find a value $c>1$ such the algorithm must run for at least $c(\max (l, m))^{2}$ steps, at least for infinity many values of $B=\max (l, m)$?? The algorithm in part (a) shows the $c=4 \cdot \frac{4}{3}=\frac{16}{3}$ is the best possible lower bound...]]

