CPSC 421/501 Homework Solutions 11
(1)(a) If $\sum_{i \in I} x_{i}=t$ for some
$I c[A]$, then

$$
\sum_{j \neq I} x_{j}=\sum_{i=1}^{N} x_{i}-\sum_{i \in I} x_{i}=y-t
$$

So

$$
\begin{aligned}
\sum_{i r I} x_{i} & =t \\
y-t & =\sum_{j \neq I} x_{j}
\end{aligned}
$$

so adding the two sides we have

$$
\left\langle x_{1}, \ldots, x_{N}, y-t, t\right\rangle \in \text { PRRTI TIN }
$$

(b) There are 2 problems:
(i) $y-t$ can be negative: erg, $N=1$

$$
\begin{aligned}
& \left(x_{1}, t\right)=(1,2) \text { so } y=\sum_{i=1}^{N}=1, \text { so } \\
& y-t=1-2<0
\end{aligned}
$$

(ii) there is another wal to sum
$x_{1}, \ldots, x_{N}, y-t, t$ to get equality
whether or not $\left\langle x_{1}, \ldots, x_{10}, t\right) \in$ SUBS T-SUM: namely: $N=1, x_{1}=3, t=2$, so $\left\langle x_{1}, t\right\rangle \notin \operatorname{SUBSET}$-sum, but $y=3-2=1$ and

$$
x_{1}=3=2+1=t+(y-t)
$$

(c) The trick is to choose B so that problems (i) and (ii) cant happen; So we need
(i) $\quad y-t+B \geq 1$, so $B \geq 1+t-y$, and
(ii) $y-t+B$ and $t+B$ must be on opposite sides of the paritition, so that

$$
\left\langle x_{1}, \ldots, x_{N}, y-t+B, t+B\right\rangle \in \operatorname{PARTITION}
$$

$\Rightarrow \quad y-t+B, t+B$ are on opposite sides,
i.e. we can't have

$$
(*)\left\{\begin{aligned}
(y-t+B)+(t+B) & +\sum_{i \in I} x_{i} \\
& =\sum_{j \notin I} x_{j}
\end{aligned}\right.
$$

But for any $I \subset[N]$,

$$
\sum_{i \in J} x_{i} \geq 0, \quad \sum_{j \neq J} x_{j} \leqslant \sum_{j=1}^{n} x_{i}=y
$$

So implies

$$
(y-t+B)+(t+B)=\sum_{j \neq I} x_{j}-\sum_{i \in I} x_{i} \leqslant y-0=y
$$

So

$$
y+2 B \leq y
$$

which can't happen if $B \geq 1$.
So $\left\langle x_{1}, \ldots, x_{N}, t\right\rangle \in \operatorname{SUBS} T T$

$$
\Leftrightarrow\left(x, \cdots, x_{N}, y-t+B, t+B\right) \in \text { PARTITION }
$$

if

$$
B \geq \max (1+t-y, 1)
$$

So it suffices to take

$$
B=\max (1+t-y, 1)
$$

Then B is at most $\max (1, t)$, so $y-t+B, t+B$ have their size at most $y=\sum_{i=1}^{N} x_{i}$ plus t plus B. Hence

$$
\begin{aligned}
& \left|\left\langle x_{1}, \ldots, x_{1}, y-t+B, t+B\right\rangle\right| \\
& \leqslant p d_{y}\left(\left|\left\langle x_{1}, \ldots, x_{N}, B\right\rangle\right|\right)
\end{aligned}
$$

(d) PARTITION $E N P$ by non-deterministically guessing, on input $\left\langle x_{1}, \ldots, x_{N}\right\rangle$, whether $i \in[N]$ is put into $I c[N]$ os not, and then Comparing $\sum_{i \in I} x_{i}$ to $\sum_{j \notin N} x_{j}$.

By (c),

$$
\text { SUBSET-SUM } \leq_{p} \text { PARTITION, }
$$

So PARTITIDN is NP-cumplete.
(2) 3 colon is NP-complete:

In class we explained that $3 C O L O R \in N P$ (by non-deteminstically guessing a 3 colouring).
Given a 3 CNF in variables X_{1}, \ldots, X_{N}, for each variable introduce vertices and

Hence if v_{1} has the colour red (say the
colours are $R=$ red, $G=$ green, $B=$ blue) then each variable musy be colored G, B or B, G :

Now we view the top x_{1} vertex as representing T (true), the bottom as F (false).

For each clause C_{1}, \ldots, C_{m} of the $3 C N E$, we add the following: for a clause x_{i} or x_{j} or x_{k} we add:

this can be blue iff one of the tap x_{i} ar top x_{j} vertices is blue
since

are is blue,
 ane red
but, similarly

can be blue

To enforce that, is blue or green, we
 can add an edge to "red"

(2) We now add a similar "Or" gadjet between " x_{i} on x_{j} and " $x_{k} "$

to insist
hence the rightmost vertex must be blue, iii. the colour at v_{2} on the left. We do the same for every other clause, but connecting to the bottom vertex of x_{i} if $\neg x_{i}$ appears, and similarly for $x_{j}, \neg x_{j}$ and $x_{k} \neg x_{k}$.
Hence we can satisfy the BCNE iff
each clause vertex is colourable (with the color at V_{2}, here shown in blue).

Hence the 3CNF in question is satisfiable this graph can be 3-coloured.
(3) 4 coLOR $\in N P$ by non-detesminstically guessing a 4-colouring of the graph (i.e. for each vertex connected to at least one edge).
To reduce 3 COLOR to 4 COLOR, given a graph G, add a new vertex, vo, to G, connected to every vertex of G (connected to same edge) Example

$G+v_{0}+$ a bunch of edges

The new graph, G^{\prime}, con be described by having one more vertex, and at most 2 new edges for each edge of G. Hence $\left|\left\langle G^{\prime}\right\rangle\right|$ can be generated from G in poly time. Any 4-colouring of G^{\prime} gives a 3-colouring of G with the 3 colours different than the colour of v_{0}; conversely, any 3-colouring of G gives a 4 colowing of G^{\prime} by colouring V_{0} with the $41^{\text {th }}$ colour. Hence

$$
(G) \in 3 \text { COLOR }
$$

$$
\Leftrightarrow\left\langle G^{\prime}\right) \in 4 \operatorname{col}{ }^{\prime} R
$$

So the map $G \longmapsto G^{\prime}$ gives a reduction $3 C O L O R \leqslant 4$ COLOR.

Hence 4 COLOR is NP-complete.
(4) (a) If for some $i \neq j, \quad x_{i}=x_{j}=T$, then either (1) i, j are both in $\{1, \ldots, m\}$
on (2) i, j are both in $\{m+1, \ldots, n\}$
or(3) one each of i, j are in one of each of $\{1, \ldots, m\}$ and $\{m+1, \ldots, n\}$.

Conversely, if $i \neq j$ are both in $\{1,-, m\}$ with it, then $T h_{2, n}\left(x_{1,}, x_{n}\right)=T$, and similisly if they are both in $\{m+1, \ldots, n\}$ or if one is in $\{1, \ldots, m\}$, the other in $\{m+1, \cdots, n\}$. Hence the equation holds
(b) Taking $m=n / 2$, we have $T h_{z, n}$ is written as the \wedge (AND) of two $T h_{2, n / 2}$ formulas, and of $\left(x_{1} \vee \ldots \vee x_{m}\right) \wedge\left(x_{m+1} \vee \ldots \vee x_{n}\right)$, the lattes of size n.

Hence $L_{n} \leqslant 2 \cdot L_{n / 2}+n$.
(c) By induction on k :
for $k=1, n=2^{k}=2, n \log _{2} n=2 \cdot 1$, and $T L_{2}\left(x_{1}, x_{2}\right)=x_{1} \wedge x_{2}$, which is of length 2 .
Hence this holds for $k=1$
Assuming it holds for some k, then

$$
\begin{aligned}
L_{2^{k+1}} & \leqslant 2 L_{2^{k}}+2^{k+1} \\
& =2 \cdot 2^{k} \cdot k+2^{k+1} \\
& =2^{k+1}(k+1)
\end{aligned}
$$

so it holds for $k+1$. Hence, by induction, it holds for all k.
(d) (a, b, c) is a slight variant, which is of the same size but is the OR of more clauses. For example,
(a, b, c) gives, after rearranging x_{2}, x_{3} :

$$
\begin{aligned}
& \operatorname{Th}_{2,4}\left(x_{1}, x_{3}, x_{2}, x_{4}\right) \\
& =\operatorname{Th}_{2}\left(x_{1}, x_{3}\right) \vee T L_{2}\left(x_{2}, x_{4}\right) \vee\left(\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{4}\right)\right) \\
& =\left(x_{1} \wedge x_{3}\right) \vee\left(x_{2} \wedge x_{4}\right) \vee\left(\left(x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{4}\right)\right)
\end{aligned}
$$

But in class we wrote

$$
=\left(\left(x_{1} \vee x_{4}\right) \wedge\left(x_{2} v x_{3}\right)\right) \times \quad \frac{1}{\operatorname{same}}
$$

So the c_{2} expends to 8 terms

$$
\begin{aligned}
& x_{1} x_{2}, x_{1} x_{3}, x_{4} x_{2}, x_{4} x_{3} \\
& \text { eras }(a, b, c) \text { writes ant }\left(\begin{array}{l}
\text { we drop the } n_{1} \\
\text { and write commas } \\
\text { for the } v
\end{array}\right)
\end{aligned}
$$

Wheras (a, b, c) writes only

$$
x_{1} x_{3}, x_{2} x_{4}
$$

Since the other two, $x_{1} x_{2}, x_{4} x_{3}$, already appear when expanding c_{1}

So the formulas are of the same size, bot the one in (a, b, c) is the OR of more clauses: they each have a largest clause of size $n=2^{k}$ literals, but the others in (a, b, c) are of size 2^{k-1}, or 2^{k-2}, etc.

