CPS 421/501 Homework Solutions 10
(1) (a) By distributivity of τ and v,

$$
\begin{aligned}
&\left(\bigwedge_{i=1}^{3} u_{i}\right) \vee\left(\bigwedge_{j=1}^{3} v_{j}\right) \vee\left(\bigwedge_{k=1}^{3} w_{i}\right) \\
&= \bigwedge_{\substack{i=1,2,3}}\left(u_{i} v v_{j} v \omega_{k}\right) \\
& k=1,2,3 \\
& k=1,2,3
\end{aligned}
$$

Size $=$ \# variables: We have 27 clauses, each clause with 3 literals, so size $=27.3=81$
(b) By distributivity we have

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3} \vee\left(\bigwedge_{\substack{i=1,2,3 \\ j=1,2,3 \\ k=1,2,3}}\left(u_{i} v v_{j} \vee w_{k}\right)\right)
$$

$$
=\bigwedge_{\substack{i=1,2,3 \\ j=1,2,3 \\ k=1,2,3}}\left(\neg x_{1} v \neg x_{2} \vee \neg x_{3} \vee u_{i} v v_{j} \vee \omega_{k}\right)
$$

with 27 clauses of 6 literals per clause, hence size $=27.6=162$
(c) We replace each clause

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3} \vee u_{i} v v_{j} \vee \omega_{k}
$$

by $\left(\neg x_{1} \vee \neg x_{2} \vee z_{1, i j k}\right) \wedge$

$$
\left.\begin{array}{l}
\left(\neg z_{1, i j k} \vee \neg x_{3} \vee\right. \\
\left(z_{2, i j k}\right) \wedge \\
\left(\neg z_{2, i j k} \vee u_{i} \vee\right. \\
\left(z_{3, i j k}\right) \wedge \\
\left(\neg z_{3, i j k} \vee\right. \\
\neg v_{j}
\end{array} \vee w_{k}\right) \quad l
$$

therefore getting

$$
\left.\bigwedge_{\substack{i=1,2,3 \\
j=1,2,3 \\
k=1,2,3}}\left[\begin{array}{l}
\left(\neg x_{1} \vee \neg x_{2} \vee\right. \\
\left.z_{1, i j k}\right) \wedge \\
\left(\neg z_{1, i j k} \vee\right. \\
\neg x_{3} \vee \\
\left(\neg z_{2, i j k}\right.
\end{array}\right) \wedge 1 \begin{array}{lll}
\left(\neg z_{2, i j k} \vee\right. & u_{i} \vee & \left.z_{3, i j k}\right) \wedge \\
\left(\neg z_{3, i j k} \vee\right. & v_{j} & \vee \\
w_{k}
\end{array}\right]
$$

Which is a 3 CNF with 27.4 clauses, hence of size $3.27 .4=81.4=324$
(d) The values of $z_{1, i j k}$ and $z_{2, i j k}$ depend only on x_{1}, x_{2}, x_{3}, which are independent of i, j, k; for example, if $\neg x_{1}=\neg x_{2}=\neg x_{3}=f_{1}$, then we must take $z_{1 i j k}=T$ and $z_{2 i j k}=T$; by constrast, if $\neg x_{1}$ or $\neg x_{2}=T$, then we can take

$$
z_{1 i j k}=z_{2 i j k}=z_{3 i j k}=F \text {, or if } \neg x_{3}=T
$$ we can take $z_{i i j k}=T$ and $z_{2 i j k}=z_{3 i j l}=F$

Hence the above formula can be shortened to

$$
\begin{aligned}
& \left(\neg x_{1} \vee \neg x_{2} \vee z_{1}\right) \wedge\left(\neg z_{1} \vee \neg x_{3} \vee z_{2}\right) \\
& \wedge \bigwedge_{\substack{i=1,2,3 \\
j=1,2,3 \\
k=1,2,3}}\left[\begin{array}{l}
\left(\neg z_{2} \vee u_{i} \vee\right. \\
\left(\neg z_{3, i j k} \vee z_{3, i j k}\right) \wedge
\end{array}\right]
\end{aligned}
$$

which is of size $6+27 \cdot 6=28 \cdot 6=168$.

Similarly the value of $z_{3, i j k}$ we need to tale depends only on $\neg Z_{2}$ and u_{i}. Hence we can write the above as

$$
\begin{aligned}
& \left(\neg x_{1} \vee \neg x_{2} \vee z_{1}\right) \wedge\left(\neg z_{1} \vee \neg x_{3} \vee z_{2}\right) \wedge \\
& \bigwedge_{i=1,2,3}\left[\left(\neg z_{2} \vee u_{i} \vee z_{3, i}\right) \wedge \bigwedge_{\substack{j=1,2,3 \\
k=1,2,3}}\left(\neg z_{3, i} \vee v_{j} \vee w_{k}\right)\right]
\end{aligned}
$$

which is of size $6+3(3+27)=96$
(2) (a) By distributing λ and v, this formula becomes a 3CNF of size 324
(b) If $y_{i j}=T$ with $j=1$, then a L at step i makes $Y_{i+1, j}=Y_{i+1,1}=L$, rather than $y_{i+1, j-1}=L \quad\left(y_{i+1, j-1}=y_{i+1,0}\right.$ does not exist). So the $Y_{i+1, j-1}$ is replaced with $Y_{i+1, j}$ (or $Y_{i+1,1}$) ; everything else is the same. Hence the 3 CNE is the same size.
(c) With 5 transitions we get 3^{5} clauses, each clause being at $O R$
of 8 literals (instead of 6). Hence we get an 8 CNF with $3^{5}=243$
clauses. The analogous trick is to write
$a_{1} \vee a_{2} \vee \ldots \vee a_{8}$ is true
\Leftrightarrow

$$
\begin{aligned}
& \left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge\left(\neg z_{1} \vee a_{3} \vee z_{2}\right) \wedge\left(\neg z_{2} \vee a_{4} \vee z_{3}\right) \\
& \left(\neg z_{3} \vee a_{5} \vee z_{4}\right) \wedge\left(\neg z_{4} \vee a_{6} \vee z_{5}\right) \wedge\left(\neg z_{5} \vee a_{7} \vee a_{8}\right)
\end{aligned}
$$

is satisfiable. Hence we can convert the 8CNF with 3^{5} clauses into a $3 C N F$ of $3^{5} \cdot 6$ clauses, which is of size $3^{6} \cdot 6=729 \cdot 6=4374$
(3) No: the reduction, as described takes time 2^{n} times some polynomial in $n\left(\right.$ to evaluate $\left.f\left(a_{1}, \ldots, a_{n}\right)\right)$. Hence the reduction is not polynomial time.
(4) Say that the reduction from A to B computes a function f.

On input w to A of length n, the reduction $A \leq p B$ runs in time $5 n^{4}$; hence $f(\omega)$ is of length at most $5 n^{4}$ hence combining this with the reduction $B \leqslant p$ runs in time $3 N^{8}$ where $N=5 n^{4}$, i.e. in time $3\left(5 n^{4}\right)^{8}=3 \cdot 5^{8} \cdot n^{32}$.
$(5)(a)$
If c_{i} contains the a variable and its negation, for example $\neg x_{3} \vee x_{3} \vee x_{4}$, then this clause evaluates to T regardless of the values of x_{1}, \ldots, x_{n}. Otherwise $l_{i 1}, l_{i 2}, l_{i 3}$ involve 1 to 3 literals that are not negations of one another. So if $l_{i 1}, l_{i 2}, l_{i 3}$ involve 3 distinct literals, we have $l_{i l}=x_{a}$ or $\neg x_{a}$, $\ell_{i 2}=x_{b}$ or $\neg x_{b}$, and $\ell_{i 3}=X_{c}$ or $\neg x_{c}$, with a, b, c distinct.
In this case $l_{i 1} \vee l_{i 2} \vee l_{i 3}$ equals f if $\quad l_{i 1}=l_{i 2}=l_{i 3}=F$, which is
possible when x_{a}, x_{b}, x_{c} are chosen appropriately. In this case the other $n-3$ variables can be set to either T or F. Hence there are exactly $2^{n-3}=2^{n} / 8$ ways to set x_{1}, \ldots, x_{n} to $1, F$ to make

$$
\ell_{i 1} \vee l_{i 2} \vee l_{i 3}=F .
$$

Similarly there are exadly 2^{n-2} or 2^{n-1} ways when some of $l_{i 1}, l_{i 2}, l_{i 3}$ are repeated.
(sb) If $l_{i 1} v l_{i 2} v l_{i 3}$ evaluates to F, then

$$
\bigwedge_{i=1}^{m} l_{i 1} l^{2} l_{i 2} v l_{i 3} \text { evaluates to } F
$$

Hence if $f=f\left(x_{1}, \ldots, x_{n}\right)$ equals a 3 CNf formula, then either
(1) each clause, C_{i}, evaluates to T regardless
or x_{1}, \ldots, x_{n}, so $f\left(x_{1}, \ldots, x_{n}\right)=T$ for all x_{1}, \ldots, x_{n},
OR
(2) Some c_{i} evaluates to F
for $2^{n-3}=2^{n} / 8$ possible
values of $x_{1}, \ldots x_{n}$. Hence $c_{1} n c_{2} n \ldots n c_{m}$ evaluates to F on at least $2^{n} / 8$ of its values.
(Sc) $f\left(x_{1}, \ldots, x_{4}\right)=x_{1} \vee x_{2} \vee x_{3} \vee x_{4}$ equals F only when $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=(F, F, F, F)$ i.e. on $\frac{1}{16} 2^{n}$ values. Since f is not identically T, but f is F on only $\frac{1}{16} 2^{n}$ of its values, f cannot be written as a 3CNf formula.

