Homework 1, CPSC 421/501, Fall 2023
Problems: Exercises 7.2.5, 7.2.10, 7.2.23,

$$
7.2 .24
$$

$=$
7.2 .5
(a) $f(A)=\varnothing$, and

$$
f(C)=\{A, B, C\}=P
$$

(b) Since $A \notin f(A), A \in T$

Since $C \in f(C), C \notin T$
We know $T \notin f(A)$, since $A \notin f(A)$ but $A \in T$. We know $T \neq f(C)$ since $C \in \in(c)$ but $c \notin T$.
(C) Now we know $f(B)=\{A, C\}$, and have $B \notin f(B)$ so $B \in T$.

Since $C \notin T$ and $A, B \in T$, we have

$$
\begin{aligned}
& T=\{A, B\} . \\
& = \\
& 7,2,16
\end{aligned}
$$

(a) $T=\{$ David $\}$
(b) If David does not love themself, then David T and $\{$ People Whom David Loves $\}=\varnothing$.
So David $\notin\{$ People Whom David Laves $\}$ but David $\in T$
so $T \neq\{$ People Whom David Loves $\}$
7.2 .23
(a) Oppenheimer $\in f(A)$, but we dunt know which other movies lie in $f(A)$
(b) g defined by

$$
\begin{aligned}
& g(\text { Oppenheimer })=A \\
& g(\text { Barbie })=B \\
& g(\text { Encounters })=C \\
& g(2001)=D
\end{aligned}
$$

(c) Oppritheimes $\in f(A) \equiv$

$$
f(g \text { (Oppenheimer }))
$$

Barbie $\notin f(B)=f(g($ Barbie $))$
Encounters $\notin f(C)=f(g($ Encounters $))$

$$
2001 \in f(D)=f(g(2001))
$$

Hence

$$
\begin{aligned}
T & =\{s \mid s \notin f(g(s))\} \\
& =\{\text { Barbie, Encounters }\}
\end{aligned}
$$

We have:
$T \notin f(g($ Oppenheimer $))$, since
Opposhemer $\in f\left(g\left(O_{\text {pporheimar }}\right)\right)$ but
Op-nhelmer $\notin T$ 。
Similarly $T \neq f\left(g\left(B_{a}\right.\right.$ bic $\left.)\right)$, since
Barbie $\notin f(g($ Barbie $))$ but
Barbie $\in T$
Similarly $T \neq f(g(s))$ for all $s \in S$.
Hence if T is the set of movies seen by x, then $x \notin\{A, B, C, D\}$ 。
7.2.24 We have the following information

Oppenheimer
Barbie

$$
2 \mathrm{col}
$$

Encounters

Here a line (edge) means that we know if a movie was seen by a person - it doesn't matter if it was or wasn't.
For A, B, D there are only arrows from Oppenheimer and Barbie:

Oppenheimer
Barbie
(ignore)
(ignore)

So any map gi $S \rightarrow S^{\prime}$ that is built from this information can only have $g(x)=A, B, D$ if $x=$ Oppenheimer, Barbie.

So one of A, B, D is not in the image of g.
(Noe that you don't really need
to draw the graph above, but it may help. This type of problem goes under the umbrella terms "matching" or "bipartite matching." If you have solved Sudoku puzzles, you have likely appealed to similar ideas.)

