GROUP HOMEWORK 11, CPSC 421/501, FALL 2023

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2023. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:
(1) You must justify all answers; no credit is given for a correct answer without justification.
(2) Proofs should be written out formally.
(3) You do not have to use LaTeX for homework, but homework that is too difficult to read will not be graded.
(4) You may work together on homework in groups of up to four, but you must submit a single homework as a group submission under Gradescope.

For the problems below, \wedge, \vee, \neg denote the logical operations AND,OR,NOT respectively.

For the problems below, recall that to show that L is NP-complete one needs to show (i) $L \in \mathrm{NP}$, and (ii) any language in NP can be reduced to L (with a polynomial time reduction); (ii) is equivalent to reducing some known NP-complete language to L (with a polynomial time reduction).
(0) Who are your group members? Please print if writing by hand.
(1) Let PARTITION be the language of descriptions of sequences of positive integers, x_{1}, \ldots, x_{N} such that for some $I \subset\{1, \ldots, N\}$ we have

$$
\sum_{i \in I} x_{i}=\sum_{j \notin I} x_{j}
$$

(i.e., the sequence x_{1}, \ldots, x_{N} can be partitioned into two subsequences whose sums are equal. Like SUBSET-SUM, we view partition as a language over $\Sigma=\{0,1, \ldots, 9, \#\} .{ }^{1}$

[^0](a) Show that if $\left\langle x_{1}, \ldots, x_{N}, t\right\rangle \in$ SUBSET-SUM,
$$
\left\langle x_{1}, \ldots, x_{N}, y-t, t\right\rangle \in \text { PARTITION }
$$
if $y-t>0$.
(b) Show that the map
$$
\left\langle x_{1}, \ldots, x_{N}, t\right\rangle \mapsto\left\langle x_{1}, \ldots, x_{N}, x_{1}+\cdots+x_{N}-t, t\right\rangle
$$
is NOT a reduction of SUBSET-SUM to PARTITION. More specifically, give an example of $\left\langle x_{1}, \ldots, x_{N}, t\right\rangle$ that is not in SUBSET-SUM, such that $\left\langle x_{1}, \ldots, x_{N}, x_{1}+\cdots+x_{N}-t, t\right\rangle$ is in PARTITION.
(c) Show that given $\left\langle x_{1}, \ldots, x_{N}, t\right\rangle$, one can find an integer B such that (i) B is of size polynomial in $\left\langle x_{1}, \ldots, x_{N}, t\right\rangle$, and (ii) $\left\langle x_{1}, \ldots, x_{N}, t\right\rangle \in$ SUBSET-SUM iff $\left\langle x_{1}, \ldots, x_{N}, B+x_{1}+\cdots+x_{N}-t, t+B\right\rangle$ is in PARTITION.
(d) Using the previous part, show that PARTITION is NP-complete.
(2) Using the hints in [Sip], Problem 7.29, page 325, show that 3COLOR (the language of descriptions of graphs that are 3-colourable) is NP-complete.
(3) Given the fact that 3COLOR is NP-COMPLETE, show that 4COLOR, the set of descriptions of graphs that have a 4 -colouring, is NP-complete.

(4) Recall that Threshold $_{k, n}$ refers to the function $\{T, F\}^{n} \rightarrow\{T, F\}$ given by Threshold $_{k, n}\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} \begin{cases}T & \text { at least } k \text { of } x_{1}, \ldots, x_{n} \text { equal } T, \text { and } \\ F & \text { otherwise. }\end{cases}$

For $n \in \mathbb{N}$, let L_{n} denote the minimum size of a formula for Threshold ${ }_{2, n}$.
(a) Explain why if $1 \leq m \leq n$, Threshold $_{2, n}\left(x_{1}, \ldots, x_{n}\right)$ equals
$\operatorname{Threshold}_{2, m}\left(x_{1}, \ldots, x_{m}\right) \vee \operatorname{Threshold}_{2, n-m}\left(x_{m+1}, \ldots, x_{n}\right) \vee\left(\left(x_{1} \vee \ldots \vee x_{m}\right) \wedge\left(x_{m+1} \vee \ldots \vee x_{n}\right)\right)$
(b) Using part (a), explain why for n even, we have $L_{n} \leq 2 L_{n / 2}+n$.
(c) Using part (b), conclude that if $n=2^{k}$ for some $k \in \mathbb{N}$, then $L_{n} \leq$ $n \log _{2} n$.
(d) Recall that in class, for $n=2^{k}$ we gave a different formula for Threshold ${ }_{2, n}$, using k clauses c_{1}, \ldots, c_{k}, where each c_{i} divides the variables x_{1}, \ldots, x_{n} into two groups based on the i-th bit in the binary (base 2) expansions of $1, \ldots, n$. How is this related to the formula for Threshold $_{2, n}$ given in parts (a,b,c)?

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.
 ${ }^{1}$ Recall our notation in class: the problem of finding a subset of the sequence (or multiset) $12,12,13,14$ that sums to 24 as $12 \# 12 \# 13 \# 14 \# 24$, where the $\#$ acts as a separator and the last number, 24 , is the desired sum of the sequence (or multiset) $12,12,13,14$; since $12+12=24$, the string $12 \# 12 \# 13 \# 14 \# 24$ lies in SUBSET-SUM.

