GROUP HOMEWORK 11, CPSC 421/501, FALL 2023

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2023. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:

- (1) You must justify all answers; no credit is given for a correct answer without justification.
- (2) Proofs should be written out formally.
- (3) You do not have to use LaTeX for homework, but homework that is too difficult to read will not be graded.
- (4) You may work together on homework in groups of up to four, but you must submit a single homework as a group submission under Gradescope.

For the problems below, \land,\lor,\neg denote the logical operations AND, OR,NOT respectively.

For the problems below, recall that to show that L is NP-complete one needs to show (i) $L \in NP$, and (ii) any language in NP can be reduced to L (with a polynomial time reduction); (ii) is equivalent to reducing some known NP-complete language to L (with a polynomial time reduction).

- (0) Who are your group members? Please print if writing by hand.
- (1) Let PARTITION be the language of descriptions of sequences of positive integers, x_1, \ldots, x_N such that for some $I \subset \{1, \ldots, N\}$ we have

$$\sum_{i \in I} x_i = \sum_{j \notin I} x_j$$

(i.e., the sequence x_1, \ldots, x_N can be partitioned into two subsequences whose sums are equal. Like SUBSET-SUM, we view partition as a language over $\Sigma = \{0, 1, \ldots, 9, \#\}$.¹

Research supported in part by an NSERC grant.

¹Recall our notation in class: the problem of finding a subset of the sequence (or multiset) 12, 12, 13, 14 that sums to 24 as 12#12#13#14#24, where the # acts as a separator and the last number, 24, is the desired sum of the sequence (or multiset) 12, 12, 13, 14; since 12 + 12 = 24, the string 12#12#13#14#24 lies in SUBSET-SUM.

(a) Show that if $\langle x_1, \ldots, x_N, t \rangle \in \text{SUBSET-SUM}$,

 $\langle x_1, \ldots, x_N, y - t, t \rangle \in \text{PARTITION}$

if y - t > 0.

(b) Show that the map

 $\langle x_1, \ldots, x_N, t \rangle \mapsto \langle x_1, \ldots, x_N, x_1 + \cdots + x_N - t, t \rangle$

is NOT a reduction of SUBSET-SUM to PARTITION. More specifically, give an example of $\langle x_1, \ldots, x_N, t \rangle$ that is not in SUBSET-SUM, such that $\langle x_1, \ldots, x_N, x_1 + \cdots + x_N - t, t \rangle$ is in PARTITION.

- (c) Show that given $\langle x_1, \ldots, x_N, t \rangle$, one can find an integer B such that (i) B is of size polynomial in $\langle x_1, \ldots, x_N, t \rangle$, and (ii) $\langle x_1, \ldots, x_N, t \rangle \in$ SUBSET-SUM iff $\langle x_1, \ldots, x_N, B + x_1 + \cdots + x_N - t, t + B \rangle$ is in PAR-TITION.
- (d) Using the previous part, show that PARTITION is NP-complete.
- (2) Using the hints in [Sip], Problem 7.29, page 325, show that 3COLOR (the language of descriptions of graphs that are 3-colourable) is NP-complete.
- (3) Given the fact that 3COLOR is NP-COMPLETE, show that 4COLOR, the set of descriptions of graphs that have a 4-colouring, is NP-complete.
- (4) Recall that Threshold_{k,n} refers to the function $\{T, F\}^n \to \{T, F\}$ given by

Threshold_{k,n} $(x_1, \ldots, x_n) \stackrel{\text{def}}{=} \begin{cases} T & \text{at least } k \text{ of } x_1, \ldots, x_n \text{ equal } T, \text{ and} \\ F & \text{otherwise.} \end{cases}$

For $n \in \mathbb{N}$, let L_n denote the minimum size of a formula for Threshold_{2,n}. (a) Explain why if $1 \le m \le n$, Threshold_{2,n} (x_1, \ldots, x_n) equals

Threshold_{2,m}(x_1,\ldots,x_m) \lor \text{Threshold}_{2,n-m}(x_{m+1},\ldots,x_n) \lor \left((x_1 \lor \ldots \lor x_m) \land (x_{m+1} \lor \ldots \lor x_n) \right)

- (b) Using part (a), explain why for n even, we have $L_n \leq 2L_{n/2} + n$.
- (c) Using part (b), conclude that if $n = 2^k$ for some $k \in \mathbb{N}$, then $L_n \leq n \log_2 n$.
- (d) Recall that in class, for $n = 2^k$ we gave a different formula for Threshold_{2,n}, using k clauses c_1, \ldots, c_k , where each c_i divides the variables x_1, \ldots, x_n into two groups based on the *i*-th bit in the binary (base 2) expansions of $1, \ldots, n$. How is this related to the formula for Threshold_{2,n} given in parts (a,b,c)?

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca *URL*: http://www.cs.ubc.ca/~jf

 $\mathbf{2}$