GROUP HOMEWORK 10, CPSC 421/501, FALL 2023

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2023. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:
(1) You must justify all answers; no credit is given for a correct answer without justification.
(2) Proofs should be written out formally.
(3) You do not have to use LaTeX for homework, but homework that is too difficult to read will not be graded.
(4) You may work together on homework in groups of up to four, but you must submit a single homework as a group submission under Gradescope.

For the problems below, \wedge, \vee, \neg denote the logical operations AND,OR,NOT respectively.

For the problems below, recall that to show that L is NP-complete one needs to show (i) $L \in \mathrm{NP}$, and (ii) any language in NP can be reduced to L (with a polynomial time reduction); (ii) is equivalent to reducing some known NP-complete language to L (with a polynomial time reduction).
(0) Who are your group members? Please print if writing by hand.
(1) Using class notes on November 20, we know that the formula

$$
\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \Rightarrow R
$$

is equivalent to

$$
\neg x_{1} \vee \neg x_{2} \vee \neg x_{3} \vee R
$$

Let $f=f\left(x_{1}, x_{2}, x_{3}, u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}\right)$ be given by

$$
f=\neg x_{1} \vee \neg x_{2} \vee \neg x_{3} \vee R,
$$

where $R=R\left(u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}\right)$ be the formula

$$
\left(u_{1} \wedge u_{2} \wedge u_{3}\right) \vee\left(v_{1} \wedge v_{2} \wedge v_{3}\right) \vee\left(w_{1} \wedge w_{2} \wedge w_{3}\right)
$$

[^0]which can be written equivalently as
$$
\left(\bigwedge_{i=1}^{3} u_{i}\right) \vee\left(\bigwedge_{j=1}^{3} v_{j}\right) \vee\left(\bigwedge_{k=1}^{3} w_{k}\right)
$$
(a) Show that R above is equivalent to a 3CNF formula; what is the size of the formula, where the size is the number of literals (i.e., variables or their negations) appearing? (For example, the size of the formula $\left(y_{1} \vee y_{1}\right) \vee \neg y_{2} \vee y_{1}$ is four.) Briefly justify your answer.
(b) Show that
$$
\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \Rightarrow R
$$
can therefore be written as a 6 CNF , i.e., an AND (\wedge) of terms (or "clauses"), each term (clause) being an OR (V) of 6 variables. Show that the resulting formula is size $27 \times 6=162$. Briefly justify your answer.
(c) Recall the trick that $a_{1} \vee a_{2} \vee \ldots \vee a_{6}$ is true iff
$$
\left(a_{1} \vee a_{2} \vee z_{1}\right) \wedge\left(\neg z_{1} \vee a_{3} \vee z_{2}\right) \wedge\left(\neg z_{2} \vee a_{4} \vee z_{3}\right) \wedge\left(\neg z_{3} \vee a_{5} \vee a_{6}\right)
$$
is satisfiable (where z_{1}, z_{2}, z_{3} are new, "auxilliary" variables). Given the 6 CNF formula in part (b), write a 3CNF formula (which may introduce some new, auxilliary variables) that is satisfiable iff f is satisfiable; use a different set of 3 new, auxilliary variables for each term/clause for which you are using this trick. Show that the resulting formula size is $27 \times 12=324$. Briefly justify your answer.
(d) Is it possible to shorten the 3CNF in part (c)? Are some of the clauses redundant? Explain.
(2) Say that we have a non-deterministic Turning machine, $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right)$ that decides a language, L, in time $C n^{k}$. Recall that for an input of size n to M, we described the configurations of this Turing machine from step 1 to step $C n^{k}$ using the variables $x_{i j \gamma}$ (true iff $\gamma \in \Gamma$ is written in cell $[i, j]$, i.e., the tape cell in position j from the left, at step i); $y_{i j}$ (true iff the tape head is over cell $[i, j]$, i.e., is in position j at step i), and $z_{i q}$ (true iff at step i we are in state q).
(a) Say that for some $q \in Q$ and $\gamma \in \Gamma$ we have
$$
\delta(q, \gamma)=\left\{\left(q_{4}, a, R\right),\left(q_{7}, b, L\right),\left(q_{8}, c, R\right)\right\}
$$

In the proof of the Cook-Levin theorem in class, this value of δ yields the condition (assuming $j \geq 2$):

$$
\begin{aligned}
& \left(x_{i j \gamma} \wedge y_{i j} \wedge z_{i q}\right) \\
& \Rightarrow\left(\left(x_{i+1, j, a} \wedge y_{i+1, j+1} \wedge z_{i+1, q_{4}}\right) \vee\left(x_{i+1, j, b} \wedge y_{i+1, j-1} \wedge z_{i+1, q_{7}}\right) \vee\left(x_{i+1, j, c} \wedge y_{i+1, j+1} \wedge z_{i+1, q_{8}}\right)\right)
\end{aligned}
$$

If we use Problem 1(c) to express the truth of this condition as the satisfiability of a 3CNF (which will introduce some new, auxilliary variables), what is the resulting formula size?
(b) Say that $j=1$ in the above, and we adapt the convention that if the tape head is over cell 1 (i.e., the leftmost cell), then the instruction to move L means that the tape head remains in cell 1 . What changes in the above formulae? Does this change the 3CNF size?
(c) What would be the resulting formula size if $\delta(q, \gamma)$ had five possible transitions instead of three? What would be the resulting size of the 3 CNF formula derived in the style of Problem 1(c)? (Don't worry about writing a shorter formula using redundant clauses, like we did in Problem 1(d).)
(3) Let EVEN be the language of strings over $\{0,1, \ldots, 9\}$ that represent positive, even integers. Of course, EVEN is a regular language, and hence decidable in time $n+O(1)$. Hence certainly EVEN \in NP.

Consider the following reduction of 3SAT to EVEN (compare Definitions 7.28 and 7.29 of $[\mathrm{Sip}])$: let $\Sigma_{\text {Bool }}=\{0, \ldots, 9, x, \vee, \wedge, \neg,()$,$\} , our usual$ alphabet for describing Boolean formulas. Given a string $w \in \Sigma_{\text {Bool }}^{*}$, do the following:
(a) check if $w=\langle f\rangle$, where f is a Boolean formula in x_{1}, \ldots, x_{n} for some n that is in 3CNF form; if not, "return" the word 3, i.e., write the word 3 on the machine tape ${ }^{1}$ and halt;
(b) otherwise, i.e., if $w=\langle f\rangle$ for some 3CNF formula f, for each possible assignment of a_{1}, \ldots, a_{n} to the values T, F, see if $f\left(a_{1}, \ldots, a_{n}\right)$ evaluates to T. If this happens for one such assignment, return the word 4, otherwise return the word 5 .
This algorithm gives a map

$$
g: \Sigma_{\text {Bool }}^{*} \rightarrow\{0,1, \ldots, 9\}^{*}
$$

such that

$$
w \in 3 \mathrm{SAT} \quad \Longleftrightarrow \quad g(w) \in \text { EVEN. }
$$

Does this mean that EVEN is NP-complete? Explain. (A brief explanation will suffice, despite the rather long statement of this problem.)
(4) Let A, B, C be languages such that $A \leq_{\mathrm{P}} B$ using a reduction that takes time $5 n^{4}$, and $B \leq_{\mathrm{P}} C$ using a reduction that takes time $3 n^{8}$ (where, as usual, n denotes the length of the input). This implies that $A \leq_{\mathrm{P}} C$, by combining the two reductions; give an upper bound on the running time of this reduction. Explain.
(5) Recall that a 3CNF formula on variables x_{1}, \ldots, x_{n} is a Boolean formula of the form

$$
\left(\ell_{11} \vee \ell_{12} \vee \ell_{13}\right) \wedge\left(\ell_{21} \vee \ell_{22} \vee \ell_{23}\right) \wedge \ldots \wedge\left(\ell_{m 1} \vee \ell_{m 2} \vee \ell_{m 3}\right)
$$

or, in more concise notation,

$$
\bigwedge_{i=1}^{m}\left(\ell_{i 1} \vee \ell_{i 2} \vee \ell_{i 3}\right)
$$

[^1]where each $\ell_{i j}$ is a literal, i.e., one of $x_{1}, \neg x_{1}, \ldots, x_{n}, \neg x_{n}$; in this case term $c_{i}=\ell_{i 1} \vee \ell_{i 2} \vee \ell_{i 3}$ is referred to as a clause of the 3CNF formula, and m is the number of clauses of the formula.
(a) Show that any clause $\ell_{i 1} \vee \ell_{i 2} \vee \ell_{i 3}$ is either (i) true for all values of x_{1}, \ldots, x_{n}, or (ii) false on at least $2^{n-3}=2^{n} / 8$ of all possible the 2^{n} values of $\left(x_{1}, \ldots, x_{n}\right) \in\{T, F\}^{n}$. [More precisely, it is false on exactly 2^{n-3} values if the clause has no repeated variables, and otherwise the same with 2^{n-3} replaced with either 2^{n-2} or $\left.2^{n-1} .^{2}\right]$
(b) Show that the Boolean function $\{T, F\}^{n} \rightarrow\{T, F\}$ represented by any 3 CNF is either (i) true for all values of x_{1}, \ldots, x_{n}, or (ii) false on at least $2^{n-3}=2^{n} / 8$ of all possible the 2^{n} values of $\left(x_{1}, \ldots, x_{n}\right) \in$ $\{T, F\}^{n}$.
(c) Show that the Boolean function $f:\{T, F\}^{4} \rightarrow\{T, F\}$ given by
$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \vee x_{2} \vee x_{3} \vee x_{4}
$$
cannot be written as a $3 \mathrm{CNF} .{ }^{3}$
Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf

[^2]
[^0]: Research supported in part by an NSERC grant.

[^1]: $1_{\text {i.e., }}$ write a 3 on the first tape cell and make sure all other tape cells have a blank symbol.

[^2]: ${ }^{2}$ We thank an anonymous post on Piazza for this correction.
 ${ }^{3}$ By contrast, in the proof of the Cook-Levin theorem we make use of the fact that $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \vee x_{2} \vee x_{3} \vee x_{4}$ is true iff $g\left(x_{1}, x_{2}, x_{3}, x_{4}, z\right)$ given by $\left(x_{1} \vee x_{2} \vee z\right) \wedge\left(\neg z \vee x_{3} \vee x_{4}\right)$ is satisfiable. Hence f is true iff g is satisfiable, but g is not a 3CNF form of f.

