GROUP HOMEWORK 9, CPSC 421/501, FALL 2023

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2023. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:
(1) You must justify all answers; no credit is given for a correct answer without justification.
(2) Proofs should be written out formally.
(3) You do not have to use LaTeX for homework, but homework that is too difficult to read will not be graded.
(4) You may work together on homework in groups of up to four, but you must submit a single homework as a group submission under Gradescope.

(0) Who are your group members? Please print if writing by hand.

(1) Let \(L \in \text{NP} \). Is \(L^* \) necessarily in \(\text{NP} \)? Explain.

(2) Let \(L \in \text{P} \). Is \(L^* \) necessarily in \(\text{P} \)? Explain. [Hint: if \(1 \leq a < b \leq n \), then \(\sigma_a \ldots \sigma_b \in L^* \) if \(\sigma_a \ldots \sigma_b \in L \) or for some \(a \leq c < b \) we have \(\sigma_a \ldots \sigma_c \in L^* \) and \(\sigma_{c+1} \ldots \sigma_b \in L^* \).]

(3) Let \(n \geq 4 \), and let \(a_1, \ldots, a_n \in \{T,F\} \). Show that
\[
a_1 \lor a_2 \lor \ldots \lor a_n = T
\]
iff the formula
\[
f(z_1, \ldots, z_{n-3}) = (a_1 \lor a_2 \lor z_1) \land (\neg z_1 \lor a_3 \lor z_2) \land \ldots \land (\neg z_{n-4} \lor a_{n-2} \lor z_{n-3}) \land (\neg z_{n-3} \lor a_{n-1} \lor a_n)
\]
is satisfiable.

(4) Say that \(\text{SAT} \in \text{P} \). Give a polynomial time algorithm that given a satisfiable Boolean formula \(f = f(x_1, \ldots, x_n) \) returns values \(a_1, \ldots, a_n \in \{T,F\} \) such that \(f(a_1, \ldots, a_n) = T \). [Hint: if \(f \) is satisfiable, then either \(f(T, x_2, \ldots, x_n) \) is satisfiable or \(f(F, x_2, \ldots, x_n) \) is satisfiable.]

Research supported in part by an NSERC grant.
DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC
V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf