GROUP HOMEWORK 7, CPSC 421/501, FALL 2023

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2023. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:

- (1) You must justify all answers; no credit is given for a correct answer without justification.
- (2) Proofs should be written out formally.
- (3) You do not have to use LaTeX for homework, but homework that is too difficult to read will not be graded.
- (4) You may work together on homework in groups of up to four, but you must submit a single homework as a group submission under Gradescope.
- (1) For any alphabet, Σ , let

PALINDROME_{Σ} = { $w \in \Sigma^* \mid w^{rev} = w$ },

where, as usual, if $w = \sigma_1 \dots \sigma_k$ is a string of length k, w^{rev} denotes the reverse string of w, i.e.,

$$(\sigma_1 \ldots \sigma_k)^{\operatorname{rev}} = \sigma_k \ldots \sigma_1.$$

Let $\Sigma = \{a, b\}$, and

 $L = PALINDROME_{\Sigma} = \{\epsilon, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, \ldots\}.$

Show that L is non-regular using the Myhill-Nerode Theorem; in other words, give an infinite sequence of strings, s_1, s_2, \ldots and prove that for all distinct $i, j \in \mathbb{N}$,

$$\operatorname{AccFut}_L(s_i) \neq \operatorname{AccFut}_L(s_j).$$

In all the exercises below, for any $k \in \mathbb{N}$, let $\Sigma = \{a, b\}$, and let C_k be,

 $C_k = \{ w \in \Sigma^* \mid \text{the } k\text{-th last symbol of } w \text{ is } a \}$ $= \{ \sigma_1 \dots \sigma_m \mid \sigma_1, \dots, \sigma_m \in \Sigma, \ m \ge k, \text{ and } \sigma_{m-k+1} = a \}.$

Research supported in part by an NSERC grant.

JOEL FRIEDMAN

Hence an element of C_k is of length at least k. For example,

 $C_2 = \{aa, ab, aaa, aab, baa, bab, aaaa, aaab, \ldots\}.$

(2) (a) Explain why

 $\operatorname{AccFut}_{C_3}(aaa) \neq \operatorname{AccFut}_{C_3}(baa),$

by finding a string in $\operatorname{AccFut}_{C_3}(aaa)$ that does not lie in $\operatorname{AccFut}_{C_3}(baa)$.

(b) Similarly, show that for any symbols $\sigma_1, \sigma_2, \sigma_3, \sigma_4 \in \Sigma$ we have

 $\operatorname{AccFut}_{C_3}(a\sigma_1\sigma_2) \neq \operatorname{AccFut}_{C_3}(b\sigma_3\sigma_4).$

(c) Find a string, w, of length three over Σ such that

$$\operatorname{AccFut}_{C_3}(w) = \operatorname{AccFut}_{C_3}(a).$$

[Note: parts (c,d) are based on similar principles, and some students may find (d) easier than (c).]

(d) Find a string, w, of length three over Σ such that

 $\operatorname{AccFut}_{C_3}(w) = \operatorname{AccFut}_{C_3}(\epsilon).$

- (e) Using the Myhill-Nerode Theorem, and the previous parts, show that the minimum number of states of a DFA recognizing C_3 is 8. Do this by showing that (i) for distinct $w, w' \in \Sigma^3$, i.e., with $w \neq w'$, we have $\operatorname{AccFut}_{C_3}(w) \neq \operatorname{AccFut}_{C_3}(w')$, and (ii) for any string s, we have $\operatorname{AccFut}_{C_3}(s) = \operatorname{AccFut}_{C_3}(w)$ for some $w \in \Sigma^3$. **DO NOT** describe the transition function, δ , the initial state, q_0 , or the set of final/accepting states, F.
- (3) Consider a DFA, $M = (Q, \Sigma, \delta, q_0, F)$ with 4 states recognizing C_2 , based on the ideas of the previous exercise and the Myhill-Nerode Theorem. (You should have one state for each string of length 2 over Σ .)
 - (a) Let q is the state corresponding to those strings whose accepting future set equals $\operatorname{AccFut}_{C_2}(bb)$. What is $\delta(q, a)$? Explain.
 - (b) Let q is the state corresponding to those strings whose accepting future set equals $\operatorname{AccFut}_{C_2}(w)$, where $w = \sigma_1 \sigma_2$ is any string of length two. What are the values of $\delta(q, a)$ and $\delta(q, b)$? Explain.
 - (c) What is q_0 , the initial state of M? Explain.
 - (d) What is F, the set of accepting/final states of M? Explain.
 - (e) Draw a diagram of the DFA (i.e., as usual, circles for the states, arrows for the δ function, etc.).

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca *URL*: http://www.cs.ubc.ca/~jf