GROUP HOMEWORK 7, CPSC 421/501, FALL 2023

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2023. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:
(1) You must justify all answers; no credit is given for a correct answer without justification.
(2) Proofs should be written out formally.
(3) You do not have to use LaTeX for homework, but homework that is too difficult to read will not be graded.
(4) You may work together on homework in groups of up to four, but you must submit a single homework as a group submission under Gradescope.
(1) For any alphabet, Σ, let

$$
\operatorname{PALINDROME}_{\Sigma}=\left\{w \in \Sigma^{*} \mid w^{\mathrm{rev}}=w\right\}
$$

where, as usual, if $w=\sigma_{1} \ldots \sigma_{k}$ is a string of length k, w^{rev} denotes the reverse string of w, i.e.,

$$
\left(\sigma_{1} \ldots \sigma_{k}\right)^{\mathrm{rev}}=\sigma_{k} \ldots \sigma_{1}
$$

Let $\Sigma=\{a, b\}$, and

$$
L=\operatorname{PALINDROME}_{\Sigma}=\{\epsilon, a, b, a a, b b, a a a, a b a, b a b, b b b, a a a a, a b b a, \ldots\} .
$$

Show that L is non-regular using the Myhill-Nerode Theorem; in other words, give an infinite sequence of strings, s_{1}, s_{2}, \ldots and prove that for all distinct $i, j \in \mathbb{N}$,

$$
\operatorname{AccFut}_{L}\left(s_{i}\right) \neq \operatorname{AccFut}_{L}\left(s_{j}\right) .
$$

In all the exercises below, for any $k \in \mathbb{N}$, let $\Sigma=\{a, b\}$, and let C_{k} be,

$$
\begin{gathered}
C_{k}=\left\{w \in \Sigma^{*} \mid \text { the } k \text {-th last symbol of } w \text { is } a\right\} \\
=\left\{\sigma_{1} \ldots \sigma_{m} \mid \sigma_{1}, \ldots, \sigma_{m} \in \Sigma, m \geq k, \text { and } \sigma_{m-k+1}=a\right\} .
\end{gathered}
$$

[^0]
Hence an element of C_{k} is of length at least k. For example,

$$
C_{2}=\{a a, a b, a a a, a a b, b a a, b a b, a a a a, a a a b, \ldots\}
$$

(2) (a) Explain why

$$
\operatorname{AccFut}_{C_{3}}(a a a) \neq \operatorname{AccFut}_{C_{3}}(b a a),
$$

by finding a string in $\operatorname{AccFut}_{C_{3}}(a a a)$ that does not lie in $\operatorname{AccFut}_{C_{3}}(b a a)$.
(b) Similarly, show that for any symbols $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4} \in \Sigma$ we have

$$
\operatorname{AccFut}_{C_{3}}\left(a \sigma_{1} \sigma_{2}\right) \neq \operatorname{AccFut}_{C_{3}}\left(b \sigma_{3} \sigma_{4}\right)
$$

(c) Find a string, w, of length three over Σ such that

$$
\operatorname{AccFut}_{C_{3}}(w)=\operatorname{AccFut}_{C_{3}}(a)
$$

[Note: parts (c,d) are based on similar principles, and some students may find (d) easier than (c).]
(d) Find a string, w, of length three over Σ such that

$$
\operatorname{AccFut}_{C_{3}}(w)=\operatorname{AccFut}_{C_{3}}(\epsilon) .
$$

(e) Using the Myhill-Nerode Theorem, and the previous parts, show that the minimum number of states of a DFA recognizing C_{3} is 8 . Do this by showing that (i) for distinct $w, w^{\prime} \in \Sigma^{3}$, i.e., with $w \neq w^{\prime}$, we have $\operatorname{AccFut}_{C_{3}}(w) \neq \operatorname{AccFut}_{C_{3}}\left(w^{\prime}\right)$, and (ii) for any string s, we have $\operatorname{AccFut}_{C_{3}}(s)=\operatorname{AccFut}_{C_{3}}(w)$ for some $w \in \Sigma^{3}$. DO NOT describe the transition function, δ, the initial state, q_{0}, or the set of final/accepting states, F.
(3) Consider a DFA, $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with 4 states recognizing C_{2}, based on the ideas of the previous exercise and the Myhill-Nerode Theorem. (You should have one state for each string of length 2 over Σ.)
(a) Let q is the state corresponding to those strings whose accepting future set equals $\operatorname{AccFut}_{C_{2}}(b b)$. What is $\delta(q, a)$? Explain.
(b) Let q is the state corresponding to those strings whose accepting future set equals $\operatorname{AccFut}_{C_{2}}(w)$, where $w=\sigma_{1} \sigma_{2}$ is any string of length two. What are the values of $\delta(q, a)$ and $\delta(q, b)$? Explain.
(c) What is q_{0}, the intial state of M ? Explain.
(d) What is F, the set of accepting/final states of M ? Explain.
(e) Draw a diagram of the DFA (i.e., as usual, circles for the states, arrows for the δ function, etc.).

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.

