GROUP HOMEWORK 3, CPSC 421/501, FALL 2023

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2023. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:
(1) You must justify all answers; no credit is given for a correct answer without justification.
(2) Proofs should be written out formally.
(3) You do not have to use LaTeX for homework, but homework that is too difficult to read will not be graded.
(4) You may work together on homework in groups of up to four, but you must submit a single homework as a group submission under Gradescope.
(1) Exercise 7.2.26(a,b,d,f) on the handout "Uncomputability in CPSC421/501." You may use any result proven in class, but nothing more.
(2) (a) Show that if $L \subset \Sigma_{\text {ASCII }}^{*}$ is recognizable but undecidable, then the complement of L, i.e., $\Sigma_{\mathrm{ASCII}}^{*} \backslash L$, is unrecognizable. You may use any result proven in class, but nothing more.
(b) Extra Credit: Exercise 7.2.26(g) on the handout "Uncomputability in CPSC421/501." You may use any result proven in class, and part (a) above, but nothing more.

You may use the following identities in the problem below:

$$
\binom{2}{2}+\binom{3}{2}+\cdots+\binom{n}{2}=\binom{n+1}{3}
$$

(where $\binom{n}{k}$ is the binomial coefficient " n choose k," i.e. $n!/(k!(n-k)!)$), and

$$
1+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

[^0](3) Let i_{1}, i_{2}, \ldots be a sequence elements of $\Sigma_{\text {ASCII }}^{*}$ such that each element of $\Sigma_{\text {ASCII }}^{*}$ appears exactly once in this sequence. ${ }^{1}$ Say that p is a Python program, and we want to know if p accepts at least one input. We can do this by the following algorithm:

Phase 1: simulate p for one step on input i_{1};
Phase 2: simulate p for two steps on i_{1} and one step on i_{2};
Phase 3: simulate p for three steps on i_{1}, for two steps on i_{2}, and for one step on i_{3};
etc.:
Phase k : on the k-th phase, for $j=1,2, \ldots, k$ we simulate p for $k-j+1$ steps on i_{j};
Consider the total number of steps run in each phase; for example, Phase 3 has 6 steps total, and the total number of steps in Phases 1 to 3 is $1+3+6=10$. (Our convention is that when you simulate p on an input for some number of steps, you forget all previous simulations of p on any input.) Say that p accepts only one input, namely i_{ℓ}, and that p requires m program steps to do so.
(a) Show that the total number of steps until the above algorithm stops (i.e., when it detects that p accepts i_{ℓ} after m steps) is exactly

$$
(1 / 6)(\ell+m)^{3}+O(1)(\ell+m)^{2}
$$

where the $O(1)$ refers to an "order 1 term," i.e., a function of ℓ, m that is bounded by a constant for $\ell+m$ sufficiently large. By exactly we mean that $(1 / 6)(\ell+m)^{3}+O(1)(\ell+m)^{2}$ is both a lower bound and an upper bound (for different values of $O(1)$).
(b) Say that we use the following variant: for all $k \in \mathbb{N}$, the k-the phase consists of simulating k steps of p on each of i_{1}, \ldots, i_{k}. Show that the total number of steps needed is exactly

$$
(1 / 3)(\max (\ell, m))^{3}+O(1)(\max (\ell, m))^{2}
$$

(c) Say that we use the following variant: for all $k \in \mathbb{N}$, the k-the phase consists of simulating $5 k$ steps of p on each of $i_{1}, \ldots, i_{5 k}$. Show that the total number of steps needed is exactly $c(\max (\ell, m))^{3}+$ $O(1)(\max (\ell, m))^{2}$ for some constant, c. What is c ?
(d) Using the previous part, for any constant $c>0$, give a variant of the above algorithm that takes at most $c(\max (\ell, m))^{3}+O(1)(\max (\ell, m))^{2}$ steps.
(4) Extra Credit: Continuing with the setup and notation as in the previous problem:
(a) Describe a variant of the above algorithm that uses no more than $O(1)(\max (\ell, m))^{2}$ steps.
(b) Prove that there is a constant $c>0$ such that any such algorithm requires at least $c(\max (\ell, m))^{2}$ steps for $\max (\ell, m)$ sufficiently large, and give such a constant, c. [This implies that there is a $c>0$ for

[^1]which this holds for all $\ell, m \in \mathbb{N}$, but it is simpler to find a c that holds when $\max (\ell, m)$ is sufficiently large.]

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.

[^1]: ${ }^{1}$ In CPSC $421 / 501$, we typically do this by listing the strings according to their length (and lexicographical order for strings of equal length), so that $i_{1}=\epsilon$ (which is the single string of length $0), i_{2}, \ldots, i_{129}$ are the elements of $\Sigma_{\mathrm{ASCII}}, i_{130}, \ldots, i_{1+128+128^{2}}$ are the elements of $\Sigma_{\mathrm{ASCII}}^{2}$, etc.

