
INTRODUCTION TO SOLVING P VERSUS NP, AND

SUBBOTOVSKAYA’S RESTRICTION METHOD

JOEL FRIEDMAN

Contents

1. Arithmetic Formulas and Circuits 2
1.1. Arithmetic Fomulas 2
1.2. Arithmetic Circuits 3
2. Boolean Formulas and the Minimum Size Formula Challenge 4
2.1. Boolean Formulas 4
2.2. Boolean Functions 5
2.3. The Minimum Formula Size Challenge 5
2.4. Working over {0, 1}, and Parity and Threshold Functions 6
2.5. Quadratic Size Formulas for Parity 6
2.6. Minimum Formula Size Challenge: Results up to 2023 7
3. Boolean Circuits and P versus NP 7
3.1. Boolean Circuits 7
3.2. Linear Size Circuit for Parity 8
3.3. NP-Complete Languages over {T, F} or {0, 1} 8
3.4. P versus NP as a Problem of Minimum Circuit Size 9
3.5. The Minimum Circuit Size Challenge 10
4. Minimum Formula Size: Basic Results 10
4.1. Boolean Formula Size: Some Easy Remarks 10
4.2. Minimum Formula Size 11
5. The “Restriction” or “Random Restriction” Method of Subbotovskaya 12
5.1. Restriction 12
5.2. Subbotovskaya’s Fundamental Lemma 13
5.3. Proof of Subbotovskaya’s Theorem 14
Appendix A. Some Progress in Formula Size After Subbotovskaya 15
A.1. Shrinkage 15
A.2. Andre’ev’s Function 16
A.3. Other Historical Remarks 16
A.4. Recent Research, Additional Remarks 17
Appendix B. From Circuits to Formulas 17
References 18

Copyright: Copyright Joel Friedman 2023. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

Date: Friday 1st December, 2023, at 10:13.

Research supported in part by an NSERC grant.
1

2 JOEL FRIEDMAN

Disclaimer: The material may sketchy and/or contain errors, which I will elabo-
rate upon and/or correct in class. For those not in CPSC 421/501: use this material
at your own risk. . .

1. Arithmetic Formulas and Circuits

Formulas and circuits occur in many different contexts; for example, formulas—
viewed as trees—are crucial to parsing langauges (including natural languages and
programming languages). Here we explain the difference between formulas and
circuits by discussing the “arithmetic” situation.

1.1. Arithmetic Fomulas. The arithmetic formula

(1) (5 + 6)× (7− 1)

can be viewed as a “computation tree,” depicted in Figure 1 This diagram is there-

5 6 7 1

+ −

×

Figure 1. A Simple Arithmetic Formula Tree

fore a directed graph, G = (V,E), which is a tree, where the vertices of this graph
are divided into:

(1) leaves, which are vertices with no incoming edges, at the bottom of Figure 1,
labelled with constants (in this case 5, 6, 7, 1, from left to right); and

(2) internal vertices, which are vertices with two incoming edges, which are
labelled with operations, either +,−,×.

The root of this is the vertex at the top, which is the only vertex that has no
outgoing edges; every other vertex has exactly one outgoing edge. Each internal
vertex can be viewed as computing a function of the leaves, which gives you an
algorithm to compute the value at each internal vertex, depicted in Figure 2. The

5 6 7 1

+ −

×

5 + 6 = 11 7− 1 = 6

(5 + 6)× (7− 1) = 11× 6 = 66

Figure 2. The Values at Interior Vertices

size of a formula refers to the number of leaves, in this case 4; alternatively, one
can count the number of operations of the tree, which is 3, always one less than the
number of leaves.

Note that using the distributive property of × over +,−, one can write (1)
equivalently as

(2) (5 + 6)× (7− 1) = 5× 7 + 6× 7− 5× 1− 6× 1;

INTRODUCTION TO SOLVING P VERSUS NP, AND SUBBOTOVSKAYA’S RESTRICTION METHOD3

however, the new formula on the right-hand-side has 7 operations (i.e., the total
count of +,−,×), so you’d likely prefer the original formula (1) that requires only
3 operations. Equivalently, the tree corresponding to (2) has 8 leaves, as opposed
to the 4 leaves in that of (1).

1.2. Arithmetic Circuits. Imagine you want to compute

(25 + 36)3 × (12 + 39)2 = (25 + 36)× (25 + 36)× (25 + 36)× (12 + 39)× (12 + 39)

The formula on the right-hand-size is of size 10 and therefore involves 9 operations
(five +’s and four ×’s); however, you can compute this with only 5 operations
(provided that you can “remember” and reuse all intermediate results):

y1 = 25 + 36, y2 = 12 + 39, y3 = y1 × y2, y4 = y1 × y3, y5 = y3 × y4.
The above is called a straight line program, where 25, 36, 12, 39 are its inputs, and
the y1, . . . , y5 are its operations (i.e., each yi is one of +,−,× applied to two values,
each of which is an input or a yj with j < i). This straight line program can be
drawn as a “circuit” depicted in Figure 3. The point is that the interior vertices

25 36 12 39

+y1 = 25 + 36 + y2 = 12 + 39

× y3 = y1 × y2 = (25 + 36)(12 + 39)

×y4 = y1 × y3 = (25 + 36)2(12 + 39)

×y5 = y3 × y4 = (25 + 36)3(12 + 39)2

Figure 3. An Arithmetic Circuit

representing y1 and y3 have more than one arrow leaving them, representing the
fact that once we compute y1, y3, we can “remember” these values and use them
more than once.

In terms of graph theory, a circuit is a directed graph that is acyclic1 and has
a unique vertex with no outgoing edges (again, called the root of the circuit); in
addition, for each “input” of the straight line program, the graph has a source (i.e.,
a vertex without incoming edges) representing the input; furthermore every vertex
that isn’t a source has two incoming edges.

In this way a formula over +,−,× is a special case of a circuit over +,−,×,
where circuits can have more than one outgoing edge from any vertex.

Of course, there is nothing special about the values 25, 36, 12, 39 in the above
circuit, and by replacing these values with variables x1, x2, x3, x4 we can say that
the algorithm

y1 = x1 + x2, y2 = x3 + x4, y3 = y1 × y2, y4 = y1 × y3, y5 = y3 × y4,
gives an algorithm for computing the polynomial

(3) y5 = p(x1, x2, x3, x4) = (x1 + x2)3(x3 + x4)2.

We may equivalently describe this algorithm by the circuit depicted in Figure 4.

1Acyclic means that the directed graph has no directed cycle; equivalently, the vertices can
arranged as v1, . . . , vN so that all edges have a tail vi and a head vj such that i < j.

4 JOEL FRIEDMAN

x1 x2 x3 x4

+y1 = x1 + x2 + y2 = x3 + x4

× y3 = y1 × y2 = (x1 + x2)(x3 + x4)

×y4 = y1 × y3 = (x1 + x2)2(x3 + x4)

×y5 = y3 × y4 = (x1 + x2)3(x3 + x4)2

Figure 4. An Arithmetic Circuit with Variables at the Leaves

2. Boolean Formulas and the Minimum Size Formula Challenge

Boolean formulas are circuits the natural analog of arithmetic formuals and
circuits.

2.1. Boolean Formulas. Recall from our discussion of SAT and 3SAT (see also
Section 7.4 of [Sip]), that—informally—a Boolean formula is any formula involving
Boolean variables and operations; typically we restrict ourselves to the operations
∧,∨,¬.

Just like any arithmetic formula has a corresponding tree, the Boolean formula:

(4) (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

has a corresponding evaluation tree:

x1 ¬x2 ¬x1 x2

∧ ∧∧

∨

We remark that any Boolean formula using ∧,∨,¬ can be written using only
∧,∨ applied to literals, meaning variables and their negations (this was helpful
when working with SAT and 3SAT): the way to do this is to use the equalities

¬(y1 ∧ y2 ∧ . . . ∧ ym) = (¬y1) ∨ (¬y2) ∨ . . . ∨ (¬ym),(5)

¬(y1 ∨ y2 ∨ . . . ∨ ym) = (¬y1) ∧ (¬y2) ∧ . . . ∧ (¬ym),(6)

(7)

to “move” all ¬ “inside all parenthesis”; for example,

¬
(
(x1 ∨ x2) ∧ (¬x3)

)
= ¬(x1 ∨ x2) ∨ ¬(¬x3) = (¬x1 ∧ ¬x2) ∨ x3,

and the last formula, (¬x1∧¬x2)∨x3 involves the operations ∧,∨ applied to literals.
[In a formula we also need parenthesis to indicate how the ∧,∨ are applied; the tree
makes this clear and does not require parentheses.]

Notice that moving the ¬ inside all parenthesis does not change the size of a
formula, i.e., the number of literals involved. We also remark that the size is
always one plus the number of ∧,∨ it involves (ignoring the number of ¬ involved).

INTRODUCTION TO SOLVING P VERSUS NP, AND SUBBOTOVSKAYA’S RESTRICTION METHOD5

2.2. Boolean Functions. A Boolean function on n variables is a function
f : {T, F}n → {T, F}; we typically write f = f(x1, . . . , xn), so that x1, . . . , xn
are Boolean variables, i.e., take on the values {T, F}, and for each (x1, . . . , xn) ∈
{T, F}n, f(x1, . . . , xn) is either T (true) or F (false). Every Boolean formula gives a
Boolean function; for example the formula (4) can be viewed as a Boolean function

(8) f(x1, x2) = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2),

i.e., the function f : {T, F}2 → {T, F} whose values are (or “truth table” is)

f(F, F) = F, f(F, T) = T, f(T, F) = T, f(T, T) = F.

This function is often called the exclusive or of x1 and x2, and commonly denoted
XOR or ⊕.

2.3. The Minimum Formula Size Challenge. The minimum formula size
challenge is to decide for any given Boolean function, f(x1, . . . , xn), what is the
minimum size of a formula expressing f . This tends to be very difficult. Often on
settles on proving upper and lower bounds on this minimum size that are as close
as possible. For reasons we explain later, we are often interested in doing this for
functions, f , that arise from problems in P or NP (see Section 3).

For example, for any k, n ∈ N consider the threshold function

Thresholdk,n(x1, . . . , xn)
def
=

{
T at least k of x1, . . . , xn equal T , and
F otherwise.

Then clearly

(9) Thresholdk,n(x1, . . . , xn)
def
=

∨
1≤i1<i2<···<ik≤n

(
xi1 ∧ xi2 ∧ . . . ∧ xik

)
,

which expresses this function via a formula of
(
n
k

)
clauses, each with k variables. It

turns out that one can usually improve on this (by a lot...).
In class we considered the example:

Threshold2,4(x1, x2, x3, x4) = (x1∧x2)∨(x1∧x3)∨(x1∧x4)∨(x2∧x3)∨(x2∧x4)∨(x3∧x4),

which is a formula of size 12. The students proposed two variants: the first is that
Threshold2,4 is true iff every group of three variables has at least one true value.
Hence

Threshold2,4(x1, x2, x3, x4) = (x1∨x2∨x3)∧(x1∨x2∨x4)∧(x1∨x3∨x4)∧(x2∨x3∨x3);

this formula is different, and again has size 12. The second variant is an improve-
ment: we write

(x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x1 ∧ x4) = x1 ∧ (x2 ∨ x3 ∨ x4)

and

(x2 ∧ x3) ∨ (x2 ∧ x4) = x2 ∧ (x3 ∨ x4).

Hence we get that Threshold2,4(x1, x2, x3, x4) is the disjunction of (i.e., OR of)

x1 ∧ (x2 ∨ x3 ∨ x4), x2 ∧ (x3 ∨ x4), x3 ∨ x4,
which reduces the formula size to 9. Notice that this strategy can similarly give a
formula for Threshold2,n of size

n+ (n− 1) + · · ·+ 2 =

(
n+ 1

2

)
− 1,

6 JOEL FRIEDMAN

which saves roughly a factor of 2 over the original 2
(
n
2

)
. We then gave a strategy

to write Threshold2,n as a formula of size ndlog2 ne as follows: first note that

Threshold2,4(x1, . . . , x4) =
(

(x2 ∨ x4) ∧ (x1 ∨ x3)
)
∨
(

(x1 ∨ x4) ∧ (x2 ∨ x3)
)

is a formula of size 8. Similarly we can write Threshold2,8 as c1 ∨ c2 ∨ c3 where

c1 = (x2∨x4∨x6∨x8)∧(x1∨x3∨x5∨x7), c2 = (x1∨x4∨x5∨x8)∧(x2∨x3∨x6∨x7),

c3 = (x1 ∨ x2 ∨ x3 ∨ x8) ∧ (x4 ∨ x5 ∨ x6 ∨ x7);

to prove this, if we write 1, . . . , 8 in binary, note that cj divides x1, . . . , x8 into two
groups with xi placed according to its j-th bit. Similarly, this writes a formula for
Threshold2,2` of size `2` for any k ∈ N

If n is not a power of 2, setting ` = dlog2 ne, we have 2`−1 < n ≤ 2`, and also

Threshold2,n(x1, . . . , xn) = Threshold2,2`(x1, . . . , xn, F, . . . , F),

which yields a formula of size at most n` = ndlog2 ne for Threshold2,n.
Now, imagine the task of trying to prove that the above strategy for writing

Threshold2,n is optimal, or finding a better method...

2.4. Working over {0, 1}, and Parity and Threshold Functions. Section 9.3
of [Sip] uses the very common alternate notation that writes 1 for T (true) and 0
for F (false); in this case ⊕, i.e., XOR, given by (8), becomes

1⊕ 1 = 0⊕ 0 = 0, 1⊕ 0 = 0⊕ 1 = 1,

and hence

(10) x1 ⊕ x2 = (x1 + x2) mod 2.

This makes it easy to see that ⊕ is an associative operator, and hence x1 ⊕ x2 ⊕
. . .⊕ xn is well defined, and, in fact

x1 ⊕ x2 ⊕ . . .⊕ xn = (x1 + x2 + . . .+ xn) mod 2.

For this reason we define the parity function as

Parityn(x1, . . . , xn) = x1 ⊕ . . .⊕ xn,
which is 0 or 1 according to whether or not the number of 1’s among x1, . . . , xn
is even or odd. Similarly, the threshold functions can be defined more simply over
{0, 1} as

Thresholdk,n(x1, . . . , xn)
def
=

{
T x1 + . . .+ xn ≥ k, and
F otherwise.

2.5. Quadratic Size Formulas for Parity. For each n ∈ Z, let F (n) denote the
minimum formula size for Parityn. To build formulas for the parity function we
note that

x1 ⊕ . . .⊕ xn = f ⊕ g,
where

f = x1 ⊕ . . .⊕ xn/2, g = xn/2+1 ⊕ . . .⊕ xn.
Since

(11) f ⊕ g = (f ∧ ¬g) ∨ (¬f ∧ g),

a formula for Parityn can be obtained from 4 formulas for Parityn/2 (for n even);
note that in a formula we have to use a separate tree for each occurrence of f and

INTRODUCTION TO SOLVING P VERSUS NP, AND SUBBOTOVSKAYA’S RESTRICTION METHOD7

g on the right-hand-side of (11). Hence F (n) ≤ 4F (n/2); it follows that if n is a
power of 2, then F (n) ≤ n2. In general there is a unique ` ∈ N with 2`−1 < n ≤ 2`

(namely ` = dlog2 ne), and in this case we have

Parityn(x1, . . . , xn) = Parity2`(x1, . . . , xn, 0, . . . , 0),

which shows that F (n) ≤ (2`)2 ≤ 4(2`−1)2 ≤ 4n2. Hence there is a formula for
Parityn of size ≤ 4n2.

2.6. Minimum Formula Size Challenge: Results up to 2023. Any formula
for a Boolean function f = f(x1, . . . , xn) that is of size less than n must not
involve at least one of its variables x1, . . . , xn. Hence any function that depends
on all of its variables has minimum formula size at least n. For many years no one
gave a significant improvement of this obvious lower bound for an explicitly stated
function, f .

In 1961, Bella A. Subbotovskaya [Sub61] (sometimes “Subbotovskaja”) gave a
rather ingenious argument that shows that Parityn requires formula of size at least
Cn3/2 for some C > 0. Subbotovskaya’s method is often called the method of
“restrictions” or “random restrictions,” for reasons that we explain below. Using
this method, a sequence of works showed that for any ε > 0, Parityn requires
formula of size at least Cn2−ε; this same method shows that a variant of the parity
functions known as Andre’ev’s functions [And87] require formula size cn3−ε; see
Section 5 and Appendix A below.

3. Boolean Circuits and P versus NP

The main point of this section is to motivate later sections, which focus on the
minimum formula size of Boolean functions. This section is independent of the
others.

A Boolean circuit is, roughly speaking, the analog of an arithmetic circuit in
Boolean algebra. There is a related “minimum circuit size challenge” for Boolean
functions; some special cases of this challenge are equivalent to solving P versus
NP. This is the point of Section 9.3 of [Sip]; we explain this here.

3.1. Boolean Circuits. A Boolean circuit is the analog of a Boolean formula
where we allow more than one outgoing edge to each vertex, which represents the
ability to “remember” the intermediate results of these vertices and to reuse them
as many times as we like. The example in [Sip], Example 9.25, page 381 gives
a circuit for the parity function of x1, x2, x3, x4. Notice that this circuit contains
three operations ∧,∨,¬, so the ¬ vertices or “gates” take only one input, not two.
Unlike formulas, one cannot move the ¬ inside the parentheses without changing
the circuit size; however, it is easy to see that doing so will increase the number of
∧,∨ by at most a factor of 2.2

Definition 3.1. We define the size of a Boolean circuit to be the total number of
∧,∨ operations used (i.e., we disregard ¬).

In this way a formula is a special kind of circuit, and the circuit size of any
formula (viewed as a circuit) is one less than the formula size.

2 This can be done by adding for each interior vertex that computes a function, g, a “mirror”
vertex that computes ¬g.

8 JOEL FRIEDMAN

It may be more natural to define the circuit size in terms of the total number of
∧,∨,¬ gates used; we claim this won’t change the circuit size by much: indeed, we
need at most one ¬ for each input and each ∧,∨ gate (after it computes its result);
hence a circuit with n inputs and m gates ∧,∨ needs at most n + m negations.
Hence the size changes from m to at most 2m+ n. A similar remark applies if one
defines the size as the total number of inputs and gates used.

3.2. Linear Size Circuit for Parity. Let G(n) be the minimum circuit size
needed to write the n variable parity function x1 ⊕ · · · ⊕ xn. Notice that for any
n′, n′′ ∈ Z with n′ + n′′ = n, Parityn(x1, . . . , xn) equals

f ⊕ g = (f ∧ ¬g) ∨ (¬f ∧ g),

where f, g are the parity functions of, respectively, n; and n′′ variables. It follows
that for any such n′, n′′, n we have

G(n) ≤ G(n′) +G(n′′) + 3

(since we count only ∧,∨, not ¬ in G(n)). In particular, G(n) ≤ G(n − 1) +
G(1) + 3 = G(n − 1) + 3, and it follows by induction, given that G(1) = 0, that
G(n) ≤ 3n − 3. [Example 9.25 of [Sip] shows that G(4) ≤ 9, which matches this
bound.]

3.3. NP-Complete Languages over {T, F} or {0, 1}. It is easy to take an NP-
complete language L ⊂ Σ∗, and produce an equivalent NP-complete language over
a two-symbol alphabet such as {T, F} or {0, 1}: for example, since in class we
previously described graphs as a language over:

Σ = {0, 1, . . . , 9,#},

and |Σ| = 11, we can write down a 4-bit binary string to represent each symbol in
Σ. This gives a map

f : Σn → {0, 1}4n

for each n. Since 3COLOR is NP-complete, we easily see that

3COLOR-IN-BINARY
def
= {f(〈G〉) |G is a 3-colourable graph}

is NP-complete.
We remark that when thinking about graphs and formulas and circuits, one can

describe graphs as a language over {0, 1} where each bit has a more direct meaning
regarding the graph: namely, if G is a graph on N vertices, we can describe the
edges of G as a subset of{

{1, 2}, {1, 3}, . . . , {N − 1, N}
}

;

we can therefore describe such a graph as a {0, 1}-string σ1,2σ1,3 . . . σN−1,N , with
for i < j, σi,j = 1 means that G contains the edge {i, j}, and σi,j = 0 means that
G doesn’t. Using the notation 〈G〉intuitive to denote this description of G, we easily
see that

3COLOR-INTUITIVE = {〈G〉intuitive |G is 3-colourable} ⊂ {0, 1}∗

is NP-complete, but each symbol in this description of G has a very intuitive mean-
ing.

INTRODUCTION TO SOLVING P VERSUS NP, AND SUBBOTOVSKAYA’S RESTRICTION METHOD9

3.4. P versus NP as a Problem of Minimum Circuit Size. [Recall the nota-
tion Z≥0 = {0, 1, 2, . . .} denotes the non-negative integers.] In Section 9.3 of [Sip],
the proof of the Cook-Levin theorem is used to show that P versus NP can be
viewed as a problem in minimum circuit size.

First, to any language over {T, F} or {0, 1} we associate a family of Boolean
functions, and vice versa.

Definition 3.2. Let L ⊂ Σ∗ where Σ = {T, F}. For each n ∈ N, we define
BoolFunctL,n : Σn → Σ via

BoolFunctL,n(σ1 . . . σn) =

{
T if σ1 . . . σn ∈ L, and
F otherwise.

We similarly define BoolFunctL,n when Σ = {0, 1}, with 1 identified with T , and 0
with F .

[Conversely, there is a reverse procedure: if f0, f1, . . . is a sequence of function
fn : Σn → Σ with Σ = {T, F}, we associate to {fn}n∈Z≥0

the language

L =
⋃

n∈Z≥0

{w ∈ Σn | fn(w) = T};

similarly for Σ = {0, 1}.]

Theorem 3.3. Let L ⊂ Σ∗ where Σ = {T, F} (or {0, 1}). If L ∈ P, then for each
n ∈ Z≥0 there exists a circuit Cn computing BoolFunctL,n such that the size of Cn
at most a polynomial in n.

Proof. Let us outline the proof: Let M = (Q,Σ,Γ, δ, q0, qacc, qrej be a determinis-
tic Turing machine that decides L in time Cnk. Let {xijγ , yij , ziq} be the Boolean
variables used in our proof of the Cook-Levin Theorem, i.e., which describe the con-
figuration of M on input σ1 . . . σn that runs up to step Cnk (hence 1 ≤ i, j ≤ Cnk,
γ ∈ Γ, and q ∈ Q). Then {xijγ , yij , ziq} are deterministic functions of σ1 . . . σn,
and in particular:

(1) x1jγ = T for j ≤ n iff γ = σj ;
(2) x1jγ = T for n+ 1 ≤ j ≤ Cnk iff γ is the blank symbol;
(3) y1j = T iff j = 1, and z1q = T iff q = q0;
(4) for each fixed i with 2 ≤ i ≤ Cnk, the variables {xi,j,γ , yi,j , zi,q} are deter-

ministic functions of {xi−1,j,γ , yi−1,j , zi−1,q}; and
(5) σ1 . . . σn ∈ L iff zCnk,qacc = T .

This allows us to build a circuit of size C ′n2k that compute all {xijγ , yij , ziq}, and
therefore that computes zCnk,qacc , which is T iff σ1 . . . , σn ∈ L.

[To complete the proof we need to fill in the details. See the proof of Theorem 9.30
of [Sip], pages 383–386.] �

We remark that Theorem 9.30 of [Sip] is stated in more general terms, namely
if L ∈ TIME(t(n)) for a function t with t(n) ≥ n for all n ∈ N, then L has circuits
of size at most C(t(n))2; also [Sip] uses the slightly different Boolean variables to
prove the Cook-Levin theorem.

Corollary 3.4. If P = NP, then for any L ∈ NP, there are C, k ∈ N such that for
all n ∈ N, BoolFunctL,n is expressed by a circuit of size at most Cnk.

10 JOEL FRIEDMAN

Hence if you can prove that 3COLOR (described over {T, F})—or any other NP-
complete problem—does not have polynomial size circuits, then you have proved
P 6= NP.

Next we state P versus NP as a problem in circuit complexity.
Notice that the circuits produced in Theorem 3.3 have a certain “uniform struc-

ture,” given that they mostly consist of expressing, for each fixed i, the variables
{xi,j,γ , yi,j , zi,q}j,γ,q in terms of {xi−1,j,γ , yi−1,j , zi−1,q}j,γ,q.

Definition 3.5. Let C0, C1, . . . be a sequence of circuits, such that each n ∈ N, Cn
has n Boolean inputs (and therefore computes some function of these n inputs).
We say that the family {Cn}n≥0 is P-uniform if there is a Turing machine, M ,
that on input 〈n〉 produces a description of Cn and runs in time polynomial in n.
(Therefore the size of Cn is at most some polynomial in n.)

It is not hard to prove the following variant of Corollary 3.4.

Theorem 3.6. Let L ⊂ Σ∗ be NP-complete, where Σ = {T, F} (or {0, 1}).
Then P = NP iff there is a P-uniform family of circuits {Cn}n≥0 that computes
BoolFunctL,n.

Proof. If P = NP then L ∈ P, and we check that the circuits built by Theorem 3.3
are P -uniform. Conversely, if there is a P-uniform family {Cn}n≥0 that computes
BoolFunctL,n, then for any w ∈ Σ∗, we see whether or not w ∈ L by building Cn
with n = |w|, and then evaluate Cn on input w = σ1 . . . σn; this gives a polynomial
time algorithm to test whether or not w ∈ L. �

The theorem above may seem unsatisfying, since the notion of P-uniform is
stated in terms of Turing machines and polynomial time algorithms—it is difficult
to state a more concrete description of what “P-uniform” means. Nonetheless, the
above theorem is the way that many researchers tend to think of P versus NP, and,
in particular, what it might take to prove that P 6= NP (if this is really true).

3.5. The Minimum Circuit Size Challenge. The minimum circuit size chal-
lenge is to determine the minimum circuit size for a given function f : {T, F}n →
{T, F}. At present, the best lower bound for the minimum circuit size for an explicit
function of n variables is a bound of order n.

SAY MORE ABOUT THE HISTORY AND/OR LITERATURE HERE.

4. Minimum Formula Size: Basic Results

In this section we make some easy observations about minimum formula size:
namely, any Boolean function {T, F}n → {T, F} can be expressed as a formula of
size n2n−1, and most such functions (i.e., more than half of the 22

n

such functions)
require a formula size at least 2n/(4 + log2 n).

4.1. Boolean Formula Size: Some Easy Remarks. Let us state some easy
results regarding Boolean functions:

Proposition 4.1. Let n ∈ N.

(1) There are 22
n

(meaning, as usual, 2(2
n)) Boolean functions f : {T, F}n →

{T, F}.
(2) Say that f : {T, F}n → {T, F} is true on exactly m of its values. Then f

can be expressed as a formula of size mn.

INTRODUCTION TO SOLVING P VERSUS NP, AND SUBBOTOVSKAYA’S RESTRICTION METHOD11

(3) Say that f : {T, F}n → {T, F} is false on exactly m of its values, Then f
can be expressed as a formula of size mn.

(4) In particualr, any Boolean formula can be expressed with a formula of size
at most n2n−1.

Let us indicate the proof:

(1) a Boolean function f = f(x1, . . . , xn) has 2n values, one on each
(x1, . . . , xn) ∈ {T, F}n, and there are two possible values (i.e., T or F).

(2) This is best illustrated by an example: say that f : {T, F}3 → {T, F} is
true on (T, T, T) and (F, F, T), and otherwise false; then we may write f as

(12) f(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (¬x1 ∧ x2¬ ∧ x3);

the general result involves m clauses, each clause the AND of n literals
representing a value where f = T .

(3) This follows by applying the previous result to the negation of f ; for exam-
ple, say that g : {T, F}3 → {T, F} is false on (T, T, T) and (F, F, T), and
otherwise true; then g = ¬f where f is as in (12). Hence

g = ¬f = ¬
(
(x1 ∧ x2 ∧ x3) ∨ (¬x1 ∧ x2¬ ∧ x3)

)
,

and using (5) and (6) this becomes

g = (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ ¬x3).

(4) Any Boolean function is either true on at least 1/2 of its 2n values, or false
on at least that many. Now apply (2) or (3).

Example 4.2. We have expressed Parity2 as a formula of size 4; it is not hard to
see that there is no smaller size formula for Parity2. For n = 2, we have n2n−1 = 4;
hence no other Boolean function of two variables requires a larger formula size than
Parity2.

4.2. Minimum Formula Size. In the previous subsection we saw that every
Boolean function {T, F}n → {T, F} can be represented by a formula of size 2n(n/2).
The point of this subsection is to prove the following result.

Proposition 4.3. For any n ∈ N, more than half of the Boolean functions
{T, F}n → {T, F} cannot be represented by a formula of size less than 2n/(4 +
log2 n).

The proof simply counts the number of formulas of a given size.

Proof. The number of Boolean formulas of size s with operators ∧,∨ on the 2n
literals x1,¬x1, x2,¬x2, . . . , xn,¬xn is exactly equal to

Formulas(n, s)
def
= Cs(2n)s2s−1,

where: Cs is the number of rooted, binary trees with s leaves; (2n)s reflects the s
choices of 2n possible literals at the leaves; and the 2s−1 represents the 2 possible
choices of ∧,∨ at each of the s−1 interior vertices. Cs is called a Catalan number,3

3 Cs can be described in many equivalent ways, such as the number strings of length 2s of
matching left- and right-parentheses.

12 JOEL FRIEDMAN

and it is well-known that Cs =
(
2s
s

) /
(s+1). Hence the majority of the 22

n

Boolean

functions on n variables cannot be expressed as a formula of size s provided that4

(13) Formulas(n, 1) + . . .+ Formulas(n, s) < (1/2)22
n

.

Since Cs, (2n)s, and 2s−1 are increasing functions of s (with n fixed), we have that
Formulas(n, s) is increasing as a function of s; hence for s ≥ 2,

Formulas(n, 1) + . . .+ Formulas(n, s) ≤ s Formulas(n, s) = sCs(2n)s2s−1

= s
1

s+ 1

(
2s

s

)
(2n)s2s−1 ≤

(
2s

s

)
(2n)s2s−1.

Note that
(
2s
s

)
≤ 22s, since for any k ∈ N we have

(
k
0

)
+
(
k
1

)
+ · · ·+

(
k
k

)
= 2k. Hence

Formulas(n, 1) + . . .+ Formulas(n, s) < 22s(2n)s2s−1,

and hence (13) holds whenever

22s(2n)s2s ≤ 22
n

.

Taking logarithms base 2, we can take any s with

2s+ s(1 + log2 n) + s ≤ 2n,

i.e., any s with s ≤ 2n/(4 + log2 n). �

5. The “Restriction” or “Random Restriction” Method of
Subbotovskaya

The point of this section is to prove the following theorem.

Theorem 5.1 (Subbotovskaya, 1961). The function

f(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn
requires formula size at least c n3/2, for some constant c > 0.

Our proof gives c = 1/
√

8; after the proof we give a more detailed calculation

that shows that we can take c = 3/2 for n ≥ 3 (and c =
√

2 for n = 2 and c = 1 for
n = 1). [Hence the constant c is quite reasonable.]

It involves the idea of a “restriction” of formulas and functions.

5.1. Restriction. If we take a Boolean function f(x1, . . . , xn) and fix some subset
of x1, . . . , xn to Boolean values, what remains is a Boolean function of the remaining
variables; we call this remaining function a restriction of f . Similarly, given any
Boolean formula with variables x1, . . . , xn, by restricting the values of some of
x1, . . . , xn we get a new formula in terms of the other variables.

Example 5.2. Let f(x1, x2, x3) be given by the formula

f(x1, x2, x3) = (x1 ∧ x2) ∨ (¬x3).

By setting x1 = T we get the restriction

g(x2, x3) = f(T, x2, x3) = (T ∧ x2) ∨ (¬x3) = x2 ∨ (¬x3).

By setting x1 = F we get the restriction

g(x2, x3) = f(T, x2, x3) = (F ∧ x2) ∨ (¬x3) = F ∨ (¬x3) = ¬x3.

4 Note that the function that is identically true could be viewed as a formula of size 0 (since it
involves no variables), or as a size 2 formula x1 ∨ ¬x1; similarly for the identically false function.

Hence, we should really insist that s ≥ 2, or add 2 to the left-hand-side into (13).

INTRODUCTION TO SOLVING P VERSUS NP, AND SUBBOTOVSKAYA’S RESTRICTION METHOD13

By setting x3 = F we get the restriction

g(x1, x2) = f(x1, x2, F) = (x1 ∧ x2) ∨ T = T.

Note that in the above example, the formula obtained by restriction can some-
times be further simplified, by repeatedly applying the simplification rules:

T ∧ x = F ∨ x = x, T ∨ x = T, F ∧ x = F

to the restricted formula. So the formula x1 ∧ x2 ∧ . . .∧ xn simplies to F under the
restriction x1 = F , but only simplifies to x2∧ . . .∧xn under the restriction x1 = T .

5.2. Subbotovskaya’s Fundamental Lemma.

Lemma 5.3 (Subbotovskaya’s Restriction Lemma). Let n ≥ 2 and f(x1, . . . , xn)
be any Boolean function whose minimum formula size is L. Then there exists a
restriction of f by fixing a single variable, such that the resulting function of the
remaining n− 1 variables has size at most L(1− (3/2)/n).

In fact, much more is true: if we pick one of the n variables x1, . . . , xn at ran-
dom, and randomly set it to T, F (each with probability 1/2), then the expected or
average size of the remaining formula is at msot L(1 − (3/2)/n). For this reason
Subbotovskaya’s method is often called the method of “random restrictions.”

To prove Lemma 5.3, we need a few preliminary results.

Lemma 5.4. Let g(x1, . . . , xn) be an arbitrary Boolean function. Then

x1 ∧ g(x1, x2, . . . , xn) = x1 ∧ g(T, x2, . . . , xn)

(this equation is an equality of Boolean functions). Similarly

¬x1 ∧ g(x1, x2, . . . , xn) = x1 ∧ g(F, x2, . . . , xn),

x1 ∨ g(x1, x2, . . . , xn) = x1 ∨ g(F, x2, . . . , xn),

¬x1 ∨ g(x1, x2, . . . , xn) = x1 ∨ g(T, x2, . . . , xn).

Proof. For any values of (x1, . . . , xn) ∈ {T, F}n, we have x1∧ g(x1, x2, . . . , xn) = T
iff x1 = T and g(x1, x2, . . . , xn) = T , which holds iff x1 = T and g(T, x2, . . . , xn) =
T . Similarly for the other formulas. �

Lemma 5.5. F = F (x1, . . . , xn) is a minimal size formula for a Boolean function,
f = f(x1, . . . , xn), and a leaf xi of F is connected to an interior node vj of F , then
the other input to vj is a formula, g, that is independent of xi.

We illustrate this lemma in Figure 5.

¬x2· · · · · ·x1

g

∧,∨vj

Figure 5. g is independent of x1 in a minimum size formula.

14 JOEL FRIEDMAN

Proof. If not, Lemma 5.4, with x1 replaced with xi everywhere, can be used to
produce a smaller formula. �

Proof of Lemma 5.3. For some i ∈ [n], at least t = L/n of the leaves equal xi,¬xi;
choose any such i. Each leaf xi is connected to an interior node vj , whose other
input, g, is independent of xi.

Say that vj computes the function xi ∧ g, then setting xi = T and xi = F ,
respectively, we are respectively left with the functions g and F ; hence the vertex
xi always eliminated from the formula tree, and for one of xi = T, F , all the children
of g (i.e., leaves in the subtree of vertices that eventually lead to g) are eliminated.
Hence on average we eliminate 3/2 inputs for each such interior node vj .

The same argument with vj computing ¬xi ∧ g, xi ∨ g, and ¬xi ∨ g shows that
the average number of leaves eliminated when setting x1 to T and F is 3/2 per
interior node that has x1 as an input. Hence by setting xi to T or F we get a tree
with at most L(1− (3/2)/n) leaves remaining. �

5.3. Proof of Subbotovskaya’s Theorem.

Proof of Theorem 5.1. By Subbotovskaya’s Lemma, there is a one-variable restric-
tion of the formula for Parityn(x1, . . . , xn) of size at most L(1− (3/2)/n). Letting
L′ be the smallest size formula for this restriction, and taking another restriction,
there is a formula for some two-variable restriction of Parityn of size at most

L

(
1− 3/2

n

)(
1− 3/2

n− 1

)
.

Repeating this argument shows that for any m ≤ n there is an (n − m)-variable
restriction of Parityn of size at most

(14) L

(
1− 3/2

n

)(
1− 3/2

n− 1

)
. . .

(
1− 3/2

m+ 1

)
≥ Lm

where Lm is the minimum formula size for Paritym. Now take m = 1; the resulting
Parity1 function depends on its single variable, and hence of size at least one. Hence

L

(
1− 3/2

n

)(
1− 3/2

n− 1

)
. . .

(
1− 3/2

2

)
≥ 1,

so

L ≥
(

1− 3/2

n

)−1
. . .

(
1− 3/2

2

)−1
.

Taking logarithms base e and using the fact that log(1 − ε) ≤ −ε (which can be
seen from a Taylor expansion), we have

loge L ≥ (3/2)

(
1

2
+

1

3
+ · · · 1

n

)
,

≥ (3/2)

∫ n+1

2

loge(x) dx ≥ (3/2)
(
loge(n+ 1)− loge 2

)
(where we have used the integral bound on the sum 1/x from x = 2 to x = n).
Hence

L ≥ (n+ 1)3/2/23/2 ≥ n3/2/
√

8.

Hence L ≥ c n3/2 with c = 1/
√

8. �

INTRODUCTION TO SOLVING P VERSUS NP, AND SUBBOTOVSKAYA’S RESTRICTION METHOD15

We remark that one can easily improve the constant c above: indeed, the proof
above implies that if Ln is the size of smallest formula for Parityn, then

Ln ≥ h(n)
def
=

n∏
i=2

(
1− 3/2

i

)−1
.

Defining cn via h(n) = cnn
3/2, a short calculation shows that cn is monotone in-

creasing over integers n ≥ 1.5 Seeing as c1 = 1, c2 =
√

2, and c3 = 1.539 . . ., we can
take c = 3/2 for n ≥ 3 (a Python calculation suggests c1000000 = 1.77245318 . . .).

Appendix A. Some Progress in Formula Size After Subbotovskaya

Research into formula size has seen a slow but steady improvement since 1961;
here we focus our remarks on Subbotovskaya’s method.

A.1. Shrinkage. Subbotovskaya’s proof shows that all one-variable restrictions of
a formula on n variables causes it size to drop by a factor of 1− (3/2)/n. Imagine
that one can improve this to a factor of 1−ω/n for ω > 3/2. Then after restricting
n−m of its variables, the average size of the formula that remains is a formula on
m variables that shrinks in size by a factor of(

1− ω/n
)(

1− ω/(n− 1)
)
. . .
(
1− ω/(m+ 1)

)
,

which is bounded above and below by a constant times (n/m)−ω. So if the average
restriction of m variables is a formula of size at least Lm, then the original formula
must have been of size at least (n/m)ωLm.

Definition A.1. The shrinkage exponent is the supremum, ω, of all real ω′ such
that for any m < n, the size of any Boolean formula on n variables of size L is
reduced to size at most cL(m/n)ω

′
for some constant c (independent of n,m,L).

We remark that Subbotovskaya’s result implies that the shrinkage exponent is at
least 3/2. Since Parityn has formulas of size O(n2), this implies that the shrinkage
exponent is at most ω ≤ 2, since L1 = 1 and Ln ≤ 4n2, where Li is the minimum
formula size for Parityi.

It wasn’t until 1993 that Impagliazzo and Nisan [IN93] improved the shrinkage
exponent to ω ≥ 1.55; slightly later Paterson and Zwick [PZ93] improved this to
ω ≥ 1.63; in 1998 H̊astad improved this to ω = 2, settling the value of the shrinkage
exponent.

5 To see this, note that

(
cn/cn−1

)2
=

(n− 1)3

n3

(
1−

3/2

n

)−2

= f(1/n),

where f(x) = (1 − x)3/(1 − (3/2)x)2. Hence cn is increasing in n provided that f(x) ≥ 1 for
0 ≤ x ≤ 1/2; to show this, it suffices to show that g(x) = (1− (3/2)x)2− (1−x)3 satisfies g(x) ≤ 0

in this range. Since g(0) = 0, and

g′(x) = 2(1− (3/2)x)(−3/2)+3(1−x)2 = 3
(
−1+(3/2)x+(1−x)2

)
= 3(x2−x/2) = 3x(x−1/2);

hence g′(x) < 0 for 0 < x < 1/2; and hence g(x) < 0 for 0 ≤ x ≤ 1/2, and hence f(x) ≥ 1 in this
range of x; hence cn is monotone increasing.

16 JOEL FRIEDMAN

A.2. Andre’ev’s Function. In 1987, Andre’ev [And87] constructed a (polynomial
time computable) function on n variables (for a sequence of n tending to infinity)
whose restriction from n variables to m = nε variables, for any ε > 0, reduces to a
formula of size roughly order n/ log(n). As a consequence, the minimum formula
size of Andre’ev’s function is at least n1+ω/ log(n). Combining this with H̊astad’s
result, this proves that Andre’ev’s function requires a size of n3−ε for any ε > 0.

Andre’ev [And87] cites [Sub61, Neč66] as inspiration. Specifically the rough idea
behind Nechiporuk’s theorem [Neč66] is that if a Boolean function encodes a “large
number” of functions on a smaller set of variables, then this can give interesting
formula size lower bounds.

Here is Andre’ev’s construction.

Theorem A.2 (Andre’ev). For any ε > 0 there is a c > 0, a sequence of integers n
tending to infinity, and a function A(x1, . . . , xn) (computable in polynomial time)
such that most (more than half of the) random restrictions of n − nε variables of
A(x1, . . . , xn) (i.e., leaving nε of its variables unrestricted) require a formula of size
≥ cn/ log2 n.

Proof. Let us sketch the idea. For each N ∈ Z define n via n/2 = 2N .
Hence each function {T, F}N → {T, F} can be specified using Boolean variables
x1, . . . , xn/2; specifically if z1, . . . , zN are N Boolean variables, and z1 . . . zN is

the binary representation of a number between 0 and 2N − 1 = (n/2) − 1, then
(z1, . . . , zN) 7→ x(z1...zN)+1 is a Boolean function; as x1, . . . , xn/2 = x2N vary over

all values of T, F , x(z1...zN)+1 varies over all 22
N

Boolean functions on z1, . . . , zN .
The next step in Andre’ev’s construction is to divide xn/2+1, . . . , xn into N

groups of nearly equal size (i.e., either bn/(2N)c or dn/(2N)e, and note that either
is roughly n/2 log2(n)); and let z1, . . . , zN be the partity of each of these N groups
of variables. So one can take Andre’ev’s function to be

A(x1, . . . , xn) = x(z1...zN)+1.

Now consider a random restriction of A(x1, . . . , xn) of n − nε variables, leaving
a function of nε of the variables x1, . . . , xn. Now let us make some additional
restrictions.

First, take a random restriction of any other variables in x1, . . . , xn/2 that are

unrestricted. This means that x1, . . . , xn/2 describe a random function {T, F}N →
{T, F}, which is therefore requires an expected formula size of at least 2N/(8 +

2 log2N) (since the majority of the 22
N

functions require size at least 2N/(4 +
log2N).

Next, a short calculation shows that in all the z1, . . . , zN , it is likely that each
zi contains at least one variable unrestricted. Given this, let us further restrict
the xn/2+1, . . . , xn so that exactly one variable in each of groups defining z1, . . . , zn
is unrestricted. The x(z1...zN)+1 is a random function on N variables, and hence

requires a formula of size at least 2N/(8 + 2 log(N)) (with high probability). �

A.3. Other Historical Remarks. The subject of formula size is a large field of
study.

Regarding minimum formula size, in 1966, Nechiporuk [Neč66] produced a for-
mula requiring c(n/ log n)2 size formulas; the general lower bounding method is
called Nechiporuk’s theorem. in 1971, Khrapchenko [Hra71] proved that Parityn
requires ≥ cn2 size formulas by a different method called Khrapchenko’s method.

INTRODUCTION TO SOLVING P VERSUS NP, AND SUBBOTOVSKAYA’S RESTRICTION METHOD17

For more historical remarks up to roughly 1987, see also Wegener’s “blue book”
[Weg87].

A.4. Recent Research, Additional Remarks. Talk about communication com-
plexity and the attempt to break the n3 barrier.

Appendix B. From Circuits to Formulas

In this section we explain how to take a circuit and produce a formula of the
same depth that computes the same Boolean function.

Note that circuit in Figure 4,

x1 x2 x3 x4

+y1 + y2

× y3

×y4

× y5

can be converted to an equivalent formula, by replicating interior vertices that are
used more than once, i.e., that have more than one outgoing arrow. The general
procedure can be understood by studying the example above: first we introduce
y′1 = y1 to take care to the two outgoing arrows at y1:

x1 x2 x1 x2 x3 x4

+y1 +y′1 + y2

× y3

×y4

× y5

so now y′1 replacates y1 (and the entire tree beneath it), and the vertices labelled
y1, y

′
1 each have a singe outgoing edge; then we introduce y′′3 = y3, and replicate

then entire subtree at and below y3, which yields:

x1 x2 x1 x2 x3 x4 x1 x2 x3 x4

+y1 +y′1 + y2

× y3

×y4

+y′′1 + y′′2

× y′′3

× y5

Since each vertex has outdegree 1 except for the root, this circuit represents a tree
and the formula(

(x1 + x2)
(
(x1 + x2)(x3 + x4)

))((
(x1 + x2)(x3 + x4)

))
,

which is of size 10, which has 9 operations in total, which is essentially (3) with
some multiplications exchanged.

18 JOEL FRIEDMAN

Remark B.1. The number of operations +,−,× in a formula is exactly one less
than the number of leaves or—in the last case—the number of x1, x2, x3, x4 appear-
ing in the formula.

Remark B.2. Note that the circuit and resulting formula have the same depth, i.e.,
the same maximum distance between the root and all leaves; in the above example
the depth is 4.

References

[And87] A. E. Andreev, On a method for obtaining more than quadratic effective lower bounds

for the complexity of π-schemes, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1987), no. 1,
70–73, 103. MR 883632

[Hra71] V. M. Hrapčenko, The complexity of the realization of a linear function in a class of
Π-schemes, Mat. Zametki 9 (1971), 35–40. MR 290872

[IN93] Russell Impagliazzo and Noam Nisan, The effect of random restrictions on formula size,

Random Struct. Algorithms 4 (1993), no. 2, 121–134.

[Neč66] È. I. Nečiporuk, On a Boolean function, Dokl. Akad. Nauk SSSR 169 (1966), 765–766.

MR 218148
[PZ93] Mike Paterson and Uri Zwick, Shrinkage of de morgan formulae under restriction, Ran-

dom Struct. Algorithms 4 (1993), no. 2, 135–150.

[Sub61] B. A. Subbotovskaya, Realization of linear functions by formulas using ∨, &, −, Dokl.
Akad. Nauk SSSR 136 (1961), 553–555, Translation in Soviet Math. Dokl., 2 (1961),

110–112,.

[Weg87] Ingo Wegener, The complexity of Boolean functions, Wiley-Teubner Series in Computer
Science, John Wiley & Sons Ltd., Chichester, 1987. MR 905473 (89b:03066)

Department of Computer Science, University of British Columbia, Vancouver, BC

V6T 1Z4, CANADA.
E-mail address: jf@cs.ubc.ca

URL: http://www.cs.ubc.ca/~jf

	1. Arithmetic Formulas and Circuits
	1.1. Arithmetic Fomulas
	1.2. Arithmetic Circuits

	2. Boolean Formulas and the Minimum Size Formula Challenge
	2.1. Boolean Formulas
	2.2. Boolean Functions
	2.3. The Minimum Formula Size Challenge
	2.4. Working over {0,1}, and Parity and Threshold Functions
	2.5. Quadratic Size Formulas for Parity
	2.6. Minimum Formula Size Challenge: Results up to 2023

	3. Boolean Circuits and P versus NP
	3.1. Boolean Circuits
	3.2. Linear Size Circuit for Parity
	3.3. NP-Complete Languages over {T,F} or {0,1}
	3.4. P versus NP as a Problem of Minimum Circuit Size
	3.5. The Minimum Circuit Size Challenge

	4. Minimum Formula Size: Basic Results
	4.1. Boolean Formula Size: Some Easy Remarks
	4.2. Minimum Formula Size

	5. The ``Restriction'' or ``Random Restriction'' Method of Subbotovskaya
	5.1. Restriction
	5.2. Subbotovskaya's Fundamental Lemma
	5.3. Proof of Subbotovskaya's Theorem

	Appendix A. Some Progress in Formula Size After Subbotovskaya
	A.1. Shrinkage
	A.2. Andre'ev's Function
	A.3. Other Historical Remarks
	A.4. Recent Research, Additional Remarks

	Appendix B. From Circuits to Formulas
	References

