
SNEAKY COMPLETE LANGUAGES AND NOTES ON

CHAPTER 7

JOEL FRIEDMAN

Contents

1. Where CPSC 421/501 Differs from Chapter 7 of [Sip] 1
2. Some Languages that are Complete for Sneaky Reasons 2

Copyright: Copyright Joel Friedman 2019. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

Disclaimer: The material may sketchy and/or contain errors, which I will elabo-
rate upon and/or correct in class. For those not in CPSC 421/501: use this material
at your own risk. . .

1. Where CPSC 421/501 Differs from Chapter 7 of [Sip]

Here we list a few minor differences between the definitions and proofs in [Sip],
Chapter 7 from the way we cover them this year in CPSC 421/501.

[Sip] defines NP in terms of verifiers and then in Corollary 7.22 proves that

NP =
⋃
k∈N

NTIME(nk);

we define NP via the above equation.
If f, g are functions N → R, we write f(n) = O(g(n)) if there are C ∈ R and

n0 ∈ N such that |f(n)| ≤ Cg(n) for all n ≥ n0. Hence n2 − 2n = n2 +O(n). [Sip]
insists that f, g have non-negative values; this doesn’t create any problems when
defining

P =
⋃
k∈N

TIME(nk), NP =
⋃
k∈N

NTIME(nk).

[Sip] proves the Cook-Levin Theorem by showing that a non-deterministic algo-
rithm running in time nk can be described by introducing Boolean variables xijs
where i, j ∈ nk and s ∈ Q∪Γ∪{#}; this uses the configuration notation on page 169
of [Sip] (e.g., abqab for a tape with contents abab followed by blanks, with the tape
head over the third tape cell and the machine being in state q).

We use the more common type of notation, specifically:

xijγ , yij , ziq
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where i, j range over 1, 2, . . . , Cnk, with i the step number and j the cell location,
and γ ∈ Γ, and q ∈ Q. ([Sip] takes C = 1 for notational simplicity.) Here xijγ is
true iff at step i, the tape cell in position j has the value γ; yij is true iff the tape
head is in cell position j on the i-th step; ziq is true iff the machine is in state q on
the i-th step.

2. Some Languages that are Complete for Sneaky Reasons

There is a standard way to produce languages that are complete for NP and
PSPACE (under polynomial time reductions). The advantage is that the proofs
of completeness are very simple; the disadvantage is that these languages aren’t of
practical interest. Let us start with the NP-complete language.

Let

NP-SNEAKY

={〈M,w, 1t〉 | M is a non-deterministic T.m. that accepts w within time t}.

We claim that NP-SNEAKY is NP-complete. To prove this we need to show that
(1) NP-SNEAKY lies in NP, and (2) any L ∈ NP can be reduced in polynomial
time to NP-SNEAKY. Claim (2) is almost immediate, and claim (1) requires a bit
more thought: you run a (non-deterministic) universal Turing machine for t steps of
M on input w, and you have to verify that the simulation runs in time polynomial
of

〈M〉+ 〈w〉+ t.

This is easy (since the input size is at least t), and will likely be done in class this
year.

You should be aware that the simulation will not run in time polynomial of

〈M〉+ 〈w〉+ log2 t.

Hence it is crucial that NP-SNEAKY expresses time, t, in unary, i.e., as 1t. In
other words, the language

{〈M,w, t〉 | M is a non-deterministic T.m. that accepts w within time t}

when you describe t in base 10 or in binary, is not in NP, at least not as far as we
know.

You might compare this to showing that SAT is NP-complete: showing that SAT
is in NP is easy, but the proof that any language in NP can be reduced to SAT is
the essence of the Cook-Levin theorem, and is a much more elaborate proof. For
NP-SNEAKY both steps in showing NP-completeness are easy, but showing that
NP-SNEAKY lies in NP—which requires a universal Turning machine—is more
difficult than that any languages in NP can be reduced to NP-SNEAKY.

Another comparison between NP-SNEAKY and SAT (and 3COLOR, VERTEX-
EXPANSION, PARTITION, etc.) is that the latter problems are interesting in ap-
plications, whereas NP-SNEAKY is just a formal construction that doesn’t seem to
have applications beyond giving a language with a simple proof of NP-completeness.

Similar remarks hold for the language:

PSPACE-SNEAKY

={〈M,w, 1s〉 | M is a deterministic T.m. that accepts w using at most space s},



SNEAKY COMPLETE LANGUAGES AND NOTES ON CHAPTER 7 3

which we easily show is complete for PSPACE under polynomial time reductions,
i.e., (1) PSPACE-SNEAKY lies in PSPACE, and (2) if L lies in PSPACE, then there
is a polynomial time reduction of L to PSPACE-SNEAKY. Moreover, PSPACE-
SNEAKY is not as interesting as TQBF (totally quantified Boolean formulas that
are true) or other languages in Section 8.2 of [Sip].

One can similarly show that

NPSPACE-SNEAKY

={〈M,w, 1s〉 | M is a non-deterministic T.m. that accepts w using at most space s}
is complete for NPSPACE under polynomial time reductions. However, Savitch’s
Theorem implies that NPSPACE = PSPACE, so PSPACE-SNEAKY is also com-
plete for NPSPACE under polynomial time reductions.
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