1. Where CPSC 421/501 Differs from Chapter 7 of [Sip]

Here we list a few minor differences between the definitions and proofs in [Sip], Chapter 7 from the way we cover them this year in CPSC 421/501.

[Sip] defines NP in terms of verifiers and then in Corollary 7.22 proves that
\[\text{NP} = \bigcup_{k \in \mathbb{N}} \text{NTIME}(n^k); \]
we define NP via the above equation.

If \(f, g \) are functions \(\mathbb{N} \to \mathbb{R} \), we write \(f(n) = O(g(n)) \) if there are \(C \in \mathbb{R} \) and \(n_0 \in \mathbb{N} \) such that \(|f(n)| \leq Cg(n) \) for all \(n \geq n_0 \). Hence \(n^2 - 2n = n^2 + O(n) \). [Sip] insists that \(f, g \) have non-negative values; this doesn’t create any problems when defining
\[\text{P} = \bigcup_{k \in \mathbb{N}} \text{TIME}(n^k), \quad \text{NP} = \bigcup_{k \in \mathbb{N}} \text{NTIME}(n^k). \]

[Sip] proves the Cook-Levin Theorem by showing that a non-deterministic algorithm running in time \(n^k \) can be described by introducing Boolean variables \(x_{ij} \) where \(i, j \in n^k \) and \(s \in \mathcal{Q} \cup \Gamma \cup \{\#\} \); this uses the configuration notation on page 169 of [Sip] (e.g., \(abqab \) for a tape with contents \(abab \) followed by blanks, with the tape head over the third tape cell and the machine being in state \(q \)).

We use the more common type of notation, specifically:
\[x_{ij\gamma}, \ y_{ij}, \ z_{iq} \]
where \(i, j \) range over \(1, 2, \ldots, Cn^k \), with \(i \) the step number and \(j \) the cell location, and \(\gamma \in \Gamma \), and \(q \in Q \). ([Sip] takes \(C = 1 \) for notational simplicity.) Here \(x_{ij\gamma} \) is true iff at step \(i \), the tape cell in position \(j \) has the value \(\gamma \); \(y_{ij} \) is true iff the tape head is in cell position \(j \) on the \(i \)-th step; \(z_{iq} \) is true iff the machine is in state \(q \) on the \(i \)-th step.

2. SOME LANGUAGES THAT ARE COMPLETE FOR SNEAKY REASONS

There is a standard way to produce languages that are complete for NP and PSPACE (under polynomial time reductions). The advantage is that the proofs of completeness are very simple; the disadvantage is that these languages aren’t of practical interest. Let us start with the NP-complete language.

Let

\[
\text{NP-SNEAKY} = \{ \langle M, w, 1^t \rangle \mid M \text{ is a non-deterministic T.m. that accepts } w \text{ within time } t \}.
\]

We claim that NP-SNEAKY is NP-complete. To prove this we need to show that (1) NP-SNEAKY lies in NP, and (2) any \(L \in \text{NP} \) can be reduced in polynomial time to NP-SNEAKY. Claim (2) is almost immediate, and claim (1) requires a bit more thought: you run a (non-deterministic) universal Turing machine for \(t \) steps of \(M \) on input \(w \), and you have to verify that the simulation runs in time polynomial of

\[
\langle M \rangle + \langle w \rangle + t.
\]

This is easy (since the input size is at least \(t \)), and will likely be done in class this year.

You should be aware that the simulation will not run in time polynomial of

\[
\langle M \rangle + \langle w \rangle + \log_2 t.
\]

Hence it is crucial that NP-SNEAKY expresses time, \(t \), in unary, i.e., as \(1^t \). In other words, the language

\[
\{ \langle M, w, t \rangle \mid M \text{ is a non-deterministic T.m. that accepts } w \text{ within time } t \}
\]

when you describe \(t \) in base 10 or in binary, is not in NP, at least not as far as we know.

You might compare this to showing that SAT is NP-complete: showing that SAT is in NP is easy, but the proof that any language in NP can be reduced to SAT is the essence of the Cook-Levin theorem, and is a much more elaborate proof. For NP-SNEAKY both steps in showing NP-completeness are easy, but showing that NP-SNEAKY lies in NP—which requires a universal Turning machine—is more difficult than that any languages in NP can be reduced to NP-SNEAKY.

Another comparison between NP-SNEAKY and SAT (and 3COLOR, VERTEX-EXPANSION, PARTITION, etc.) is that the latter problems are interesting in applications, whereas NP-SNEAKY is just a formal construction that doesn’t seem to have applications beyond giving a language with a simple proof of NP-completeness.

Similar remarks hold for the language:

\[
\text{PSPACE-SNEAKY} = \{ \langle M, w, 1^s \rangle \mid M \text{ is a deterministic T.m. that accepts } w \text{ using at most space } s \},
\]
which we easily show is complete for PSPACE under polynomial time reductions, i.e., (1) PSPACE-SNEAKY lies in PSPACE, and (2) if \(L \) lies in PSPACE, then there is a polynomial time reduction of \(L \) to PSPACE-SNEAKY. Moreover, PSPACE-SNEAKY is not as interesting as TQBF (totally quantified Boolean formulas that are true) or other languages in Section 8.2 of [Sip].

One can similarly show that

\[
\text{NPSPACE-SNEAKY} = \{ \langle M, w, 1^s \rangle \mid M \text{ is a non-deterministic T.m. that accepts } w \text{ using at most space } s \}\]

is complete for NPSPACE under polynomial time reductions. However, Savitch’s Theorem implies that NPSPACE = PSPACE, so PSPACE-SNEAKY is also complete for NPSPACE under polynomial time reductions.