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1. The Main Goals of This Article

The first two weeks of CPSC 421/501 will be spent covering Sections 1–6 of this
article; (most of) the rest of this article will be covered later in the course.

One main goal of this article is to introduce some material that is typical of the
level of difficulty of CPSC 421/501. In particular, this article includes some material
of Chapters 4 and 5 of [Sip]; this material is more difficult than Chapters 1–3 of
[Sip], where the course usually begins.

Another goal is to introduce some basic terminology used throughout this course:
alphabets, strings, languages, and “descriptions” of various objects (integers, pro-
grams, etc.) as strings.

This article will explain (thereby “spoiling”) one of the main surprises in this
course: “self-referencing” combined with “negation” leads to some wonderful “para-
doxes” and/or “contradictions,” which—sometimes—prove interesting theorems
(e.g., the Halting Problem is undecidable).

2. Some Unrecognizable Languages

In this section we give examples of “problems” that cannot be “solved by a
computer program” (or “by an algorithm”).

[In Appendix A (not covered in this course), we will also explain that “most”
problems cannot be solved.]

This section begins by defining the notion of a language (i.e., a “problem”) and
what it means for a language to be recognizable (i.e., “solvable by a computer pro-
gram”). We will then prove the deservedly famous Cantor’s theorem, and use it to
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produce an unrecognizable language. This language is not of direct practical inter-
est, but its unrecognizability implies that many other languages (i.e., problems)—
which are of practical interest—are also unrecognizable, or at least undecidable.
Examples of undecidable languages include “the halting problem” and “used line
of code;” examples of unrecognizable languages include “the non-halting problem”
and “unused line of code.”

One shortcoming of this section is that our description of “computer program”
or “algorithm” (and therefore of recognizability) is a bit imprecise. Later in this
course we will remedy this by defining Turing machines (in Chapter 3 of [Sip]).

2.1. Alphabets, Strings, and Languages. Let us review some common defini-
tions in computer science theory (many can be found in [Sip], Chaper 0).

An alphabet is a finite, nonempty set.
Let Σ be an alphabet. For any k ∈ Z≥0 = {0, 1, 2, . . .}, the set of strings of

length k over Σ refers to Σk (the Cartesian product Σ× . . .× Σ of k copies of Σ);
hence Σ0 = {ε} where ε denotes the empty string. The set of strings over Σ refers
to union

Σ∗
def
=

∞⋃
k=0

Σk = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · ·

A language over Σ refers to any subset of Σ∗.

Example 2.1. If Σ = {a, b}, then (a, b, b, a) ∈ Σ4 is a string of length 4 over Σ;
for brevity we usually write abba instead of (a, b, b, a). Hence

Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, . . .}

(we often list elements of a language by shortest first, and secondarily in lexico-
graphical order).

If S is any set, then Power(S) refers to the set of all subsets of S. Hence the set
of all languages over Σ equals Power(Σ∗).

Example 2.2. Let Σdigits = {0, 1, . . . , 9}. Every non-negative integer has a unique
base 10 representation (e.g., 0, 1, 2, 7, 421, 2023), which we interpret as a string over
Σdigits. More formally, if n ∈ {0, 1, 2, . . .}, we use 〈n〉 to denote the associated
string; hence 〈2023〉 is technically the string of length 4, (2, 0, 2, 3), but for brevity
write 2023; to avoid confusion, at times we write “the integer 2023” for the integer,
and 〈2023〉 or “the string 2023” when referring to the string). We define

PRIMES = {〈n〉 | n is prime} = {〈2〉, 〈3〉, 〈5〉, 〈7〉, 〈11〉, 〈13〉, . . .} ⊂ Σ∗digits

or, for brevity,

PRIMES = {2, 3, 5, 7, 11, 13, . . .} ⊂ Σ∗digits.

We tend to write languages in ALL CAPITAL LETTERS. Another example is

DIV-BY-5 = {〈0〉, 〈5〉, 〈10〉, 〈15〉, . . .} = {0, 5, 10, 15, . . .} ⊂ Σ∗digits

(by writing ⊂ Σ∗digits we know that we are speaking about a subset of strings).
Related languages are

POSITIVE-DIV-BY-5 = {5, 10, 15, 20, 25, . . .} ⊂ Σ∗digits
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and
DIV-BY-5-LEADING-ZEROS-OK1

= {0, 5, 00, 05, 10, 15, 20, . . . , 95, 000, 005, 010, . . . , 095, 100, 105, . . .} ⊂ Σ∗digits

Remark 2.3. Starting in Section 3.3 of [Sip], we will use the notation 〈X〉 to mean
“the description of X as string” (with some agreed upon conventions). For example,
if G is the set of graphs, G, whose vertex set is of the form [n] = {1, 2, . . . , n}, then
(in class) we will describe each G ∈ G as a string 〈G〉 over some fixed alphabet (e.g.,
Σ = {0, 1,#}). Similarly if f is a Boolean formula on variables x1, . . . , xn, we will
fix some conventions so that 〈f〉 is a string over some alphabet that describes f (a
convenient alphabet here is Σ = {x, 0, 1,∧,∨,¬, (, )}).

Remark 2.4. When we discuss algorithms that run in “polynomial time” in Chap-
ter 7 of [Sip], we will see that there is a big difference between (1) alphabets with
at least two symbols and (2) unary alphabets, i.e., those with exactly one symbol;
both types of alphabets will be of interest. In this section we discuss only the
concepts of recognizability and decidabilty, where this distinction is unimportant.

2.2. Programs that Recognize Certain Languages. In this section we will
provide a rough framework needed to define “recognizable” languages. You should
be convinced that this framework can be made precise (there are choices to make),
and that the notion of “recognizable” does not depend on the choices you make.

[In Chapter 3 we will make this framework completely precise using Turing ma-
chines, which is a simple (but limited) model of a “computer program.”]

Let ΣASCII be the usual ASCII alphabet, an alphabet of size 256. Fix a pro-
gramming language, such as Python (almost any other programming language will
work, e.g., C, C++, APL, Javascript, MATLAB, Maple, etc.).

To fix ideas, here is a sample Python program (called a “function” or “user
defined function” in Python), named isPal(), that checks if an “input” to the
program is a palindrome (i.e., the same as the reverse word):

#

# Python ignores any part of a line after the first "#"

#

def isPal(): # the program is called "isPal()"

i = input("Your input: ") # i is an input given by the user

n = len( i ) # n is the length of i

for m in range( n ): # hence m runs from 0 to n-1

if ( i[m] != i[ n-1-m] ): # Note that != means "not equal to"

return("no") # no, i is not a palindrome

return("yes") # yes, i is a palindrome

[This program takes an ASCII string i as input, sets n to be the length of i, and
then checks if the m-th character of i equals the (n−m− 1)-th character of i, for
m = 0, 1, . . . , n− 1.]

Assume you have fixed conventions so that the following holds (there is some
flexibility here, but most “reasonable”2 set of conventions will work): there is a

1 In this language we allow extraneous leading 0’s, so, for example, the strings 5, 05, 005 ∈
Σ∗digits are identified with the integer 5, which is divisible by 5, and therefore these strings are

contained in this language.
2 In class we may give examples of “unreasonable” conventions, such as that in Example 2.18.
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subset of Σ∗ASCII that are designated to be “valid Python programs” such that if p
is a valid Python program, then, after discarding the comments (i.e., the #’s and
anything that follows them on a line)

(1) The first line of p—although irrelevant to us—is a “def statement” that
names the program and declares it to have no arguments (as in the above
example).

(2) The second line of p is i = input("Your input: "), that sets the vari-
able i to an arbitrary ASCII string specified “externally” by the “user;”
we refer to this value of i as the input to the program.

(3) No other lines of the program use an input statement.
(4) After the line i = input("Your input: "), the program runs with the

“usual conventions” of Python (here there is some flexibility).
(5) When a return statement is reached, the program execution halts. The

program may halt for other reasons (e.g., if you divide by 0, or if it runs
the entire program). A program may not halt (e.g., if it tries to execute an
“infinte loop”).

[It should be pretty clear how to do this, at least to readers who have had
the pleasure of writing computer programs. In class I’ll answer questions you have
regarding the above. When we cover Turing machines we will have a precise version
of a “program” and how to represent each as a string over some fixed alphabet.]

Say that p ∈ Σ∗ASCII is a valid Python program. For each i ∈ Σ∗ASCII, one says
that p accepts i if on input i, p eventually reaches the statement return("yes").
The language recognized by p is defined to be

(1) LanguageRecBy(p)
def
= {i ∈ Σ∗ASCII | p accepts i} ⊂ Σ∗ASCII.

We say that L ⊂ Σ∗ASCII is recognizable if there is a valid Python program p such
that L = LanguageRecBy(p), and otherwise we say that L is unrecognizable.

Example 2.5. The program isPal() above recognizes the language PALIN-
DROME, of ASCII strings that are palindromes. Hence PALINDROME is rec-
ognizable.

Example 2.6. The language PRIMES is recognized by a Python program (assum-
ing a typical interpretation of Python programs); indeed, the program needs to (1)
checks if the input is string representing an integer greater than 1, and (2) check if
the integer has a divisor other than itself and 1. [The naive version of checking (2)
takes “exponential time” in the length of the input.] Similarly for DIV-BY-5 and
many other languages (CPSC 320 gives many examples).

Now we extend the definition in (1) by defining

(2) LanguageRecBy(p)
def
= ∅, if p is not a valid Python program.

(The value ∅ is not essential to what we do, but is convenient for our exposition.)
Hence (1) and (2) give a function

LanguageRecBy: Σ∗ASCII → Power(Σ∗ASCII).

We will now give an unrecognizable language. This follows immediately from Can-
tor’s theorem.
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2.3. Cantor’s Theorem and Unrecognizable Languages.

Theorem 2.7 (Cantor’s Theorem). Let S be a set, and f : S → Power(S) be any
function. Then some T ∈ Power(S) is not in the image of f . Specifically the set

T = {s | s /∈ f(s)}

is not in the image of f , i.e., there is no t ∈ S such that f(t) = T .

Proof. Assume, to the contrary, that some t ∈ S has f(t) = T . Either t ∈ T or
t /∈ T : let us derive a contradiction in either case.

If t ∈ T , then by the definition of T , t /∈ f(t). But, by assumption, f(t) = T so
t /∈ f(t) = T , which contradicts the assumption that t ∈ T .

Similarly, if t /∈ T , then t does not sastisfy t /∈ f(t). Hence t ∈ f(t) = T , which
contradicts t /∈ T . �

Example 2.8. Let S = {1, 2, 3} and f : S → Power(S) be given by

f(1) = {1, 2, 3}, f(2) = ∅, f(3) = {1, 2}.

Then we easily check that T in Theorem 2.7 is T = {2, 3}, which is visibly not in
the image of f . Of course, |S| = 3, and |Power(S)| = 23 = 8, so it is clear that any
f : S → Power(S) is not surjective.

Example 2.9. A department has 3 profs, P = {A,B,C}. It is given that (1)
Prof. A thinks that everyone in the department is clever, (2) Prof. B thinks
that no one in the department is clever, and (3) Prof. C thinks that they alone
are clever (i.e., that C is clever, and A,B are not clever). This gives a map
ThinksIsClever : P → Power(P ), namely

ThinksIsClever(A) = {A,B,C}
ThinksIsClever(B) = ∅
ThinksIsClever(C) = {C}

Hence

A ∈ ThinksIsClever(A)

B /∈ ThinksIsClever(B)

C ∈ ThinksIsClever(C)

The set T of profs who do not consider themself to be clever is T = {B}; we easily
directly check that T is not in

Image(ThinksIsClever) =
{
{A,B,C}, ∅, {C}

}
.

Corollary 2.10. Fix any set of conventions regarding Python programs that satis-
fies the conditions in Subsection 2.2. Then

(3) T = {p ∈ Σ∗ASCII | p /∈ LanguageRecBy(p)}

is unrecognizable.
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Proof. A language is recognizable iff it is in the image of the map

LanguageRecBy: Σ∗ASCII → Power(Σ∗ASCII).

By Cantor’s theorem, T in (3) is not in the image of LanguageRecBy. �

Remark 2.11. In class on September 13, 2023, we named the language in the
above corollary

GROUCHO-MARX-SELF = {p ∈ Σ∗ASCII | p /∈ LanguageRecBy(p)}

based on the quote:

“I don’t want to belong to any club that will accept me as a mem-
ber.” Groucho Marx (1890–1977).

We also thought of other names for this language. However, it might be truer to
the quote to define

GROUCHO-MARX-WANTS-IN = {p ∈ Σ∗ASCII |GROUCHO-MARX /∈ LanguageRecBy(p)}

Remark 2.12. Note that by our conventions, T above contains all strings, p, that
are not valid Python programs. Say that our conventions regarding valid Python
programs imply that there is some symbol σ0 ∈ ΣASCII that is never found in a
valid Python program; it follows that for k ∈ N sufficiently large, 99.9999% of the
ASCII strings of length k do not represent valid Python programs (why?). It follows
that T and the (trivially) recognizable language Σ∗ASCII agree on 99.9999% of the
ASCII strings of any sufficiently large length. In this sense, T can “mostly agree”
with a recognizable language; the above theorem only asserts that no algorithm can
correctly recognize T “100% of the time.”

Remark 2.13. Some practical computer algorithms halt (eventually terminate)
on any given input. If p is a valid Python program that halts on any given input,
then one can “simulate p on input p” to check whether or not p ∈ T with T as in
Corollary 2.10.

2.4. Undecidable and Unrecognizable Languages. There is no obvious reason
why you’d want an algorithm to recognize

(4) T = {p ∈ Σ∗ASCII | p /∈ LanguageRecBy(p)}.

However, the consequences of the unrecognizability of T are rather drastic.
Assume some conventions regarding Python programs are fixed and satisfy (1)–

(3) in Subsection 2.2. Furthermore assume that there is some symbol σ0 ∈ ΣASCII

that is never used in a valid Python program; we fix such a σ0, and call it (for
reasons to become clear) the separating symbol. Then if p is any valid Python
program, and i an input to p, we can encode the pair (p, i) as the string s = pσ0i;
given such an s, we can recover p as the substring of s occurring before the first
σ0 in s, and recover i as the substring after the first σ0. We note that Σ∗ASCII is
partitioned into three sets (i.e., each element of Σ∗ASCII lies in exactly one of the
three sets below):

ACCEPTANCE = {pσ0i ∈ Σ∗ASCII | p is a valid Python program that accepts i},
NON-ACCEPTANCE = {pσ0i ∈ Σ∗ASCII | p is a valid Python program that does not accept i}.

NON-PYTHON = Σ∗ASCII \
(
ACCEPTANCE ∪NON-ACCEPTANCE

)
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(therefore NON-PYTHON refers to strings that either don’t contain a σ0 some-
where, or are of the form sσ0i where s contains no σ0 but s is not a valid Python
program). We say that a Python program is a decider if it halts (terminates) in a
finite number of execution steps on any input and returns either yes or no; we say
that a language is decidable if it is recognized by some Python program that is a
decider.

Remark 2.14. Let us summarize these definitions, plus some extra ones given in
class on September 13, 2023.

Term Definition
p accepts i on input i, p returns yes

p rejects i on input i, p returns no

p loops on i on input i, p does not return yes or no
p halts on i on input i, p returns yes or no,

i.e., p accepts or rejects i,
i.e., p does not loop on i

LanguageRecBy(p) {i ∈ Σ∗ASCII | p accepts i}
L is recognizable for some p, L = LanguageRecBy(p)
(where L ⊂ Σ∗ASCII)
an L ⊂ Σ∗ASCII is recognizable for some p, L = LanguageRecBy(p)
p is a decider on all inputs, i, p halts on i
an L ⊂ Σ∗ASCII is decidable for some decider p, we have

L = LanguageRecBy(p)

We will also consider the following languages:

ACCEPTANCE = {pσ0i ∈ Σ∗ASCII | p is a valid Python program that accepts i},
NON-ACCEPTANCE = {pσ0i ∈ Σ∗ASCII | p is a valid Python program that does not accept i},

NON-PYTHON = {pσ0i ∈ Σ∗ASCII | p is not a valid Python program},
HALTING = {pσ0i ∈ Σ∗ASCII | p is a valid Python program that halts on i},

REJECTING = {pσ0i ∈ Σ∗ASCII | p is a valid Python program that rejects i},
LOOPING = {pσ0i ∈ Σ∗ASCII | p is a valid Python program that loops on i}.

In class we will explain why:

(1) NON-PYTHON is decidable (in “polynomial time”).
(2) ACCEPTANCE is recognizable by a universal machine for Python, i.e., one

that on input pσ0i checks if p is a valid program, and if so it “simulates”
how p works on input i, and says yes if p does so on input i. [The point is
that if p never halts on input i, then the universal machine does not halt on
input pσ0i (and hence a universal machine is not a decider), but still—by
definition—it recognizes ACCEPTANCE.] For example, a “program debug-
ger” that allows you to run through a program step-by-step (and examine
the contents of its variables, etc.) is essentially a universal machine.

This will allow us to conclude that:

(1) NON-ACCEPTANCE is unrecognizable: if it were recognizable by a
Python program, q, given any p ∈ Σ∗ASCII, you could give pσ0p as input
to q. This gives us a Python program (or algorithm) that would recognize
T in (4), which is impossible. Hence NON-ACCEPTANCE is unrecogniz-
able. [This is an example of a “reduction,” i.e., we can “reduce” T to
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NON-ACCEPTANCE, i.e., we have an algorithm to solve T if we have an
algorithm to solve NON-ACCEPTANCE; this yields a contradition.]

(2) ACCEPTANCE is not decidable (if it were, then you could decide the
union of NON-ACCEPTANCE and NON-PYTHON, and therefore decide
NON-ACCEPTANCE, hence recognize NON-ACCEPTANCE, which is im-
possible).

(3) Let USED-LINE-OF-CODE be the set of strings of the form pσ0`, where
p is a valid Python program and ` is a line of the program p that is “ex-
ecuted/reached” when p runs on at least one of its inputs. Then USED-
LINE-OF-CODE is undecidable, given that ACCEPTANCE is undecidable,
for the following reason (we’ll get used to this type of argument): given a
program p and an input, i to p, one can produce a program p′ with a line
of code, `, such that p accepts i iff p′ executes ` on all inputs to p′, by a
standard type of construction3; hence if USED-LINE-OF-CODE were de-
cidable, then so would be ACCEPTANCE. Moreover, we will also prove
that USED-LINE-OF-CODE is recognizable4. Hence the complement of
USED-LINE-OF-CODE (and therefore the analogously defined UNUSED-
LINE-OF-CODE) is unrecognizable.

2.5. Change of Alphabet, Generalized Cantor’s Theorem. Next imagine
that your Python programs are written in ASCII, but that their inputs are strings
over the alphabet

ΣGreek = {α, β, γ, . . . , ω,A,B,Γ, . . . ,Ω}.
Could every language over ΣGreek be recognizable, giving a surjection L : Σ∗ASCII →
Power(Σ∗Greek) ?

It turns out—which may not surprise you—that changing the alphabet does not
really matter.

What if a Python program is allowed an input that is a single element of
N = {1, 2, 3, . . .} or of R, the real numbers? What about if a program has state-
ments involving real numbers? We will discuss such questions further in the next
subsection and in Section 5.

For now, let’s state an easy extension of Cantor’s theorem; with a little more
work (done in Section 5) shows that changing the alphabet (as above) does not
matter. We need the following definitions (see also Definition 4.12 of [Sip]).

Definition 2.15. Let A,B be sets, and f : A → B a function (also known as a
map and a morphism). We say that f is:

3 To see this, you take p′ to be a program that ignores its input and instead sets SpecialInput

to i; then p′ runs like p, except that you create a new line, `, in p′, where p′ sets SpecialOutput

to yes, and you require that wherever p assigns a value to SpecialOutput, you first check if this

value is yes, and if so then you branch to `. Hence p′σ0` lies in USED-LINE-OF-CODE iff pσ0i
lies in ACCEPTANCE.

4 This is another type of argument that we will get used to: first, one can write the set of

possible inputs to a program in an (infinite) list i1, i2, i3, . . ., where (1) i1 = ε, (2) i2, . . . , i257 are
the elements of Σ1

ASCII, (3) i258, . . . , i1+256+2562 are the elements of Σ2
ASCII, etc. To recogonize

USED-LINE-OF-CODE, on input pσ0`, we check if p is a valid Python program; if so, we run

(i.e., simulate) p for one execution step on i1; then we run p for two execution steps on i1 and on
i2; then we run p for three execution steps on i1, i2, and on i3; etc. We halt this procedure and

accept p if we reach line ` on any of these runs (i.e., simulations). It follows that this procedure

accepts p iff there is some input, i, such that p reaches line ` on input i after some number of
steps. Hence USED-LINE-OF-CODE is recognizable.
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(1) injective (also known as an injectiion, one-to-one, and a monomorphism) if
a, a′ ∈ A with a 6= a′ implies f(a) 6= f(a′);

(2) surjective (a.k.a. as a surjection, onto or an epimorphism) if for all b ∈ B
there is an a ∈ A with f(a) = b;

(3) a bijection (a.k.a. a bijection, a one-to-one correspondence5 or an isomor-
phism) if it is injective and surjective.

You should convince yourself that if A,B are finite sets, then there exists (1)
an injection A → B iff |A| ≤ |B|, (2) a surjection A → B iff |A| ≥ |B|, and (3) a
bijection A→ B iff |A| = |B|.

Say that there is a surjection S → S′; then there can’t exist a surjection S′ →
Power(S) since (we easily see that) a compositions of two surjections is a surjection,
and there is no surjection S → Power(S). For finite sets, there is a surjection S → S′

iff |S′| ≤ |S|; hence if one can make sense of the statement “|S′| ≤ |S|” for infinite
sets S, S′, one should be able to prove

|S′| ≤ |S| ⇒ there is no surjection S′ → Power(S).

This is essentially done in Theorem 2.16 below.
We warn the reader that the notion of the “size of a set” becomes tricky with

infinite sets: indeed, in Section 5 we describe a bijection from N = {1, 2, 3, . . .} to
Z = {. . . ,−2,−1, 0, 1, 2, . . .}, and hence we regard the two sets as having the “same
size” and write |N| = |Z| (both sets are countably infinite). Of course, N ⊂ Z is
a proper subset. For now, let’s accept that there is a way to make sense of the
statement |S′| ≤ |S|, and that this implies that there is a surjection S → S′6.

Theorem 2.16 (Generalized Cantor’s theorem). Let g : S → S′ be a surjection of
sets. Then for any map f : S′ → Power(S), the image of f is not all of Power(S);
specifically the set

T = {s ∈ S | s /∈ f(g(s))}
is not in the image of f .

Proof. Assume, to the contrary, that f(t′) = T for some t′ ∈ S′. Since g is surjec-
tive, there exists a t ∈ S with g(t) = t′. Then either t ∈ T or t /∈ T ; in both cases we
easily get a contradiction; we leave the details as an exercise (Exercise 7.2.9). �

Example 2.17. Say that:

(1) student A has not seen the movie “Oppenheimer;”
(2) student B has seen the 2023 movie “Barbie” and has not seen the movie

“2001: A Space Odyssey;”
(3) student C has seen the movie “Encounters at the End of the World.”

We now create a subset of movies that is not the subset of movies seen by any of
A,B,C: the above data gives us a surjection:

g : {Oppenheimer,Barbie, 2001,Encounters} → {A,B,C},

5 We warn the reader that a correspondence from A to B (without writing “one-to-one”) is
often defined to be a morphism C → A×B.

6 One usually defines |S′| ≤ |S| to mean that there exists an injection f : S′ → S; (in typical
set theories one uses) this implies that is a surjection g : S → S′, taking g to be the inverse of f

on the image of f , and taking g outside of the image of f to be, say, some fixed value. If you try
to prove the converse, that given a surjection g : S → S′ there is an injection f : S′ → S, a simple
way to do this is to choose for each s′ ∈ S′ an element s ∈ S such that g(s) = s′: note that this

proof is OK only if you are assume the Axiom of Choice.
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i.e., g : S → S′ where

S = {Oppenheimer,Barbie, 2001,Encounters}, S′ = {A,B,C}.

We let

T = {s ∈ S |s has not been seen by g(s)}

= {Oppenheimer, 2001}
and consider a (possibly imaginary) student, X, who has seen Oppenheimer and
2001 but has not seen Barbie and Encounters. We see that:

(1) X cannot equal A, since X has seen Oppenheimer, but A has not;
(2) X cannot equal B, since X has not seen Barbie but B has; another way to

see that X cannot equal B is that X has seen 2001, but B has not;
(3) X cannot equal C, since X has not seen Encounters but C has.

In Section 5 we will see that for alphabet, Σ, the set Σ∗ is countably infinite;
it will follow that even if two alphabets, Σ1,Σ2, are of different size, nonetheless
Σ∗1 and Σ∗2 are “of the same size,” meaning that there is a bijection Σ∗1 → Σ∗2
(and hence a surjection Σ∗1 → Σ∗2). Hence Theorem 2.16 implies that there is no
surjection Σ∗1 → Power(Σ∗2). Hence the choice of alphabet makes no difference.

2.6. ∗Some Subtle Issues.

Example 2.18. Say that PythonReal is a language that is based on Python, but
is also allowed access to a real constant, x ∈ R as part of its program description;
also assume that the operations +,−,× are performed exactly, as well as the logical
operator >= (greater than or equal to). Then if Σ is a fixed alphabet, then it is
not hard to build for each language over Σ a PythonReal program that recognizes
it. [To do so, set up a bijection Σ∗ with N, and to any subset L ⊂ Power(N) let

x =
∑
n∈L

3−n,

which is a real number between 0 and 1/2; note that 1 ∈ L iff 3x ≥ 1. The rest is
an exercise.]

Example 2.19. A similar comment holds for a Python program that is allowed to
access an infinitely long string, x, as part of its program description.

In the above two examples, as x varies you are allowing for an uncountable num-
ber of programs; these two examples would be considered “unreasonable” as models
for algorithms that involve languages over a finite alphabet. However, a Python-
Real program—without an arbitrary hardwired constant—is an interesting model
for problems involving real computation7: surely a lot of numerical algorithms are
most directly explained as real number computations; of course, working with fi-
nite precision (or exact arithmetic with rational numbers) can introduce additional
hurdles when modeling computation and solving problems.

The following will be explained when we cover Chapter 3 and/or a part of Chap-
ter 9 of [Sip].

7 See, e.g., Complexity and Real Computation, by Blum, Cucker, Shub, and Smale, 1998,
Springer.
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Example 2.20. A similar comment holds for oracle Turing machines with an
oracle A ⊂ Σ∗ for some alphabet Σ. However, in this context we usually fix the
same oracle, A, to be used by all machines. Also, the term oracle clarifies that an
A ⊂ Σ∗ is a part of the machine. (And it is immediate that a language, A, can be
decided—in constant time—by a Turing machine using a single oracle call to the
oracle A.)

3. Some “Paradoxes”

Two important results of CPSC 421/501 are: (1) the unsolvabilitiy of the halting
problem, and (2) NP-completeness. The first is linked with a number of other
remarkable results in logic and computing, and appear as paradoxes:

(1) I am lying.
(2) This statement is a lie.
(3) The phrase: “the smallest positive integer not defined by an English phrase

of fifty words or fewer” [This is called the “Berry Paradox,” although likely
due to Russell.]

(4) This is a statement that does not have a proof that it is true.
(5) Leslie writes about (and only about) all those who don’t write about them-

selves.
(6) Let S be “the set of all sets that do not contain themselves.” [This is

Russell’s most famous (and serious) paradox.]
(7) Consider a C program, P , that (1) takes as input a string, i, (2) figures out

if i is the description of a C program that halts on input i, and (3) (i) if so,
P enters an infinite loop, and (ii) otherwise P stops running (i.e., halts).
[The paradox is: what happens when this program is given input j where
j is the string representing P ?]

One thing that these statements have in common is that they all either explicity
“refer to themselves” or can be “applied to themselves.” Another is that they
involve fundamental ideas in logic or computing. Another is that on some naive
level they lead to a “paradox.”

Consider the first statement, “I am lying,” famously used, of course, by Captain
Kirk and Mr. Spock8 to destroy the leader of a group of robots. This leads to a
paradox: if the speaker is telling the truth, then the speaker is lying (“I am lying”),
but if the speaker is lying, then the speaker is lying that they are lying, meaning
they are telling the truth. Either way we get a contradition.

All the other statements lead to “paradoxes” (of somewhat different types); this
will be discussed in class and the exercises.

Note the similarity with the proof of Cantor’s Theorem 2.7, that takes a map
f : S → Power(S) and constructs the set

T = {s ∈ S | s /∈ f(s)}.
There is no paradox here: although the phrase s /∈ f(s) has a negation, but not a
true self-reference. On the other hand, Russull’s famous paradox considers

T = {S |S is a set with S /∈ S},
and this does lead to a paradox in “naive set theory,” and had people looking for
a type of set theory that avoided this paradox; the usual fix was that formulas

8Thanks to Benjamin Israel for pointing out an earlier inaccuracy.
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such as “the set of all sets such that etc.” yields a “class” that may not be a set
(intuitively because it may be “too large”). In brief: “S /∈ S” historically created a
paradox and some rethinking of foundations, but “s /∈ f(s)” gives you a (Cantor’s)
theorem.

4. Dealing with Paradoxes

There are a number of approaches to dealing with paradoxes. They include:

(1) Ignore the paradox. Carry on regardless.
(2) Admit the paradox, but claim it doesn’t matter in practice.
(3) State the paradox in very precise terms and consider the consequences.

For example, when Russell pointed out his paradox (6) of the last section, many
mathematicians carried on with whatever they were doing, regardless; however, this
paradox did lead some mathematicians to formulate axioms of set theories where
this paradox does not occur. In this course we aim for approach (3), which can lead
to a number of results, such as:

(1) The paradox goes away when things are stated precisely.
(2) The paradox doesn’t go away, and you have to change your theory if you

want to free it of this particular paradox.
(3) The paradox goes away, but only provided that X is true. Then you have

proved that X is true (assuming that you don’t have paradoxes or related
problems in what you are doing).

As examples: the Berry paradox (3) of the last section goes away when things are
stated precisely; Russell’s paradox (6) lead to a rewriting of set theory with “sets”
and “classes” (which includes things “larger than sets”), in which “the set of all
sets such that blah blah blah” is a class but not necessarily a set. The halting
problem, paradox (7), is an example of a “paradox” that is not really a paradox: it
shows you that a certain assumption leads to a “paradox” or “contradiction,” and
hence the assuption is incorrect; so paradox (7) proves that the “halting problem”
cannot be solved by an “algorithm.”

5. More on Cantor’s Theorem: Countability, Yes/No Systems

In this section we make some more remarks regarding Section 2.
In Subsection 5.1, as promised at the end of Subsection 2.5, we will show that if

Σ1,Σ2 are any two alphabets—possibly of different sizes—the sets Σ∗1 and Σ∗2 are
“of the same size,” i.e., there is a bijection between them. We conceptualize this
by showing that both are countably infinite. Then generalized Cantor’s theorem
implies that there is no surjection Σ∗ASCII → Power(Σ∗Greek), and no surjection
Σ∗1 → Power(Σ∗2) for any alphabets Σ1,Σ2.

In Subsection 5.2 we will explain why Cantor’s theorem and its generalization
are often described as a type of “diagonalization argument,” by drawing certain
“yes/no tables.”

In Subsection 5.3 we introduce the framework of “yes/no systems,” as a first
step to understanding how the yes/no tables of Subsection 5.2 are related to the
undecidability and unrecognizability. In Section 6 we will enhance these “yes/no
systems” to “yes/no/loops systems” which will allow us to explain the undecid-
ability results in Section 4.2 of [Sip] and Section 2 of this article in a very general
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context that includes Python programs, and oracle Turning machines (or oracle
Python programs).

5.1. Countably Infinite Sets.

Definition 5.1. A set S is countably infinite if there is exists bijection N→ S. A
set is countable if it is finite or countably infinite; a set is uncountable if it is not
countable.

Example 5.2. For example, the set of integers

Z = {0, 1,−1, 2,−2, 3,−3, . . .}
is countable: indeed, there is a bijection f : N→ Z with

f(1) = 0, f(2) = 1, f(3) = −1, f(4) = 2, f(5) = −2, f(6) = 3, f(7) = −3, . . .

as indicated above; more precisely, f is given by f(k) = (k − 1)/2 if k is odd, and
f(k) = k/2 if k is even. The map n 7→ sn gives a bijection Note that N is a proper
subset of Z.

For finite sets S′ ⊂ S with S′ 6= S, there can never be a bijection from S′ → S;
hence for infinite sets any such intuition requires some “getting used to.” [We will
recall a famous quote by John von Neumann regarding this.]

Example 5.3. Let Σ = {a}. Then Σ∗ = {ε, a, a2, a3, . . .}, and hence the function
f : N→ {a}∗ taking n to an−1 is a bijection.

Example 5.4. Let Σ = {a, b}. It is not hard to prove that we may list Σ∗ as an
infinite sequence

s1 = ε, s2 = a, s3 = b, s4 = aa, s5 = ab, s6 = ba, s7 = bb, s8 = aaa, . . .

in order of increasing length, and secondarily in lexicographical order (such that
each string in Σ∗ occurs exactly once). Assuming we have proven this, we get a
map n → sn that is a bijection N → Σ∗. One can similarly prove this for any
alphabet Σ.

Example 5.5. Let S be any countably infinite set. Then there is a bijection
S → N (which is, in particular, a surjection), and hence, by Theorem 2.16, there is
no surjection N→ Power(S). Hence Power(S) is uncountable.

Here are some additional examples that we will likely discuss in class.

(1) for any alphabet, Σ, Σ∗ is countably infinite (see above), and therefore (see
above) Power(Σ∗) is uncountable;

(2) the set, Q, of rational numbers is countably infinite;
(3) if S is countable, for any bijection S → T , T is countable; the same holds

with “countable” replaced both times with “uncoutable” (and “finite” and
“countably infinite”);

(4) Cantor’s theorem implies that if S is any infinite set, then Power(S) is
uncountable;

(5) the set R, i.e., of real numbers, is uncountable; this is often proven by
“diagonalization,” which is essentially the same as (or extremely similar
to) the proof of Cantor’s theorem;

(6) Cantor’s theorem implies that there is no bijection from a countable set to
an uncountable set;
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(7) the set of maps S → {0, 1} has a simple bijection to the set of all subsets of
S, and similarly with {0, 1} replaced by {no, yes} or any two-element set.

We will also use some facts about bijections, surjections, and injections. Some of
these are not intuitive, and some reasonably sounding assertions are false or not
necessarily true.

Remark 5.6. If Σ is a fixed alphabet, and S ⊂ Σ∗, then S is either finite or
countably infinite (we will likely discuss this in class, at least in “naive terms”).
For all infinite S ⊂ Σ∗, is there necessarily a Python program that can compute a
bijection g : N→ S ? [Exercise.]

Remark 5.7. If S ⊂ N and there is no bijection S → N, then we will show that S
is finite. Say that S ⊂ Power(N) and that there is no bijection S → Power(N), is
there necessarily true that S is countable? Is the answer obvious?9.

5.2. Cantor’s Theorem, Diagonalization, and yes/no Tables. Let us de-
scirbe Example 2.9 in the following table:

Does X think that Y is clever? Y = A Y = B Y = C

X = A yes yes yes

X = B no no no

X = C no no yes

The set of profs who do not think of themself as clever is obtained by taking the
diagonal elements:

Does X think that Y is clever? Y = A Y = B Y = C

X = A yes

X = B no

X = C yes

and putting s into T if the corresponding “diagonal element” is no. Hence T = {B}
in this case.

In this way Cantor’s theorem is an example of diagonalization; the term diago-
nalization is really an umbrella term for a number of mathematical techniques in
a number of contexts (e.g., analysis, including ODE’s and PDE’s) that appeal to
“diagonal” of a square gid as above.

However, you don’t necessarily need a diagonal: consider the diagram:

Does X think that Y is clever? Y = A Y = B Y = C

X = A yes

X = B no

X = C no

In this case we have chosen one entry in each row so that no two entries are in
the same column; by choosing T to be the s such that column s has a no, we get
T = {A,C}, and we see that T is also not in the image of the function

ThinksIsClever : {A,B,C} → Power
(
{A,B,C}

)
because:

9 The assumption that S is countably under these conditions is called the continuum hypothesis;

it was a long-standing open problem if the standard set theory axioms (i.e., ZFC, which assumes
the Axiom of Choice) imply the continuum hypothesis; in roughly 1963, Paul Cohen settled this

negatively, using forcing arguments to prove that the continuum hypothesis is independent of ZFC.
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(1) T cannot equal ThinksIsClever(A), since ThinksIsClever(A) contains B,
and T does not;

(2) T cannot equal ThinksIsClever(B), since ThinksIsClever(B) does not con-
tain C, and T does;

(3) T cannot equal ThinksIsClever(C), since ThinksIsClever(C) does not con-
tain A, and T does.

Hence, for any function f : {A,B,C} → Power(A,B,C) that looks like the above
diagram, i.e., such that

(5)

Is Y ∈ f(X)? Y = A Y = B Y = C

X = A anything yes anything
X = B anything anything no

X = C no anything anything

it follows that T = {A,C} in not in the image of f .
We can conceptualize the example above as a special case of our generalized

Cantor’s theorem (Theorem 2.16): indeed, let S = S′ = {A,B,C}, and let g : S →
S′ be the surjection (which is also a bijection):

g(A) = B, g(B) = C, g(C) = A.

Then (5) is equivalent to:

Is Y ∈ f(g(X))? Y = A Y = B Y = C

X = A no anything anything
X = B anything yes anything
X = C anything anything no

It may be clearer to consider a case of generalized Cantor’s theorem (Theo-
rem 2.16) where S 6= S′.

Example 5.8. Say that:

(1) Ursula Le Guin has written The Dispossessed, The Lathe of Heaven, and
The Left Hand of Darkness;

(2) Daniel Abraham and Ty Franck have co-written Leviathan Wakes.

Let

S = {Dispossessed,Lathe,Left,Leviathan}, S′ = {Ursula,Daniel,Ty};

the above data gives us a yes/no table: S′ → Power(S)

Did s′ (co)write s? s = Dispossessed s = Lathe s = Left s = Leviathan

s′ = Ursula yes yes yes no

s′ = Daniel no no no yes

s′ = Ty no no no yes

However, even with only the partial information:

Did s′ (co)write s? s = Dispossessed s = Lathe s = Left s = Leviathan

s′ = Ursula yes

s′ = Daniel no yes

s′ = Ty no
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we can still produce a subset of novels that is not equal to the set of novels written
or co-written by any author; namely, this partial information lets us answer the
question “did g(s) (co)write s ? ” where we set

g(Dispossessed) = Ty, g(Lathe) = Daniel, g(Left) = Ursula, g(Leviathan) = Daniel;

notice that g is surjective. Hence the set of s such that g(s) did not (co)write s is

T = {Dispossessed,Lathe},

and no author (co)wrote exactly this subset T of books.

Example 5.9. Let S, S′ be as in Example 5.8, and say that we know the following
partial information on which authors (co)wrote the following books:

Did s′ (co)write s? s = Dispossessed s = Lathe s = Left s = Leviathan

s′ = Ursula yes

s′ = Daniel no no yes

s′ = Ty

This table answers the question “did g(s) (co)write s” where

g(Dispossessed) = Daniel, g(Lathe) = Daniel, g(Left) = Ursula, g(Leviathan) = Daniel;

but g is not a surjection. Hence we cannot use Theorem 2.16 to infer a subset of
books that isn’t (co)written by any author. Of course, the row for Ty is blank,
which is another reason that we can’t infer such a subset. Since there are 16 such
subsets, and only 3 authors, it is clear that there are at least 13 such subsets (and
if Ty and Daniel have identical authorships, and Ursula differs with Ty and Daniel,
then there are exactly 14 such subsets).

5.3. Generalized Cantor’s Theorem as Abstract Computation: Yes/No
Systems. We can rewrite generalized Cantor’s theorem (Theorem 2.16) to look
more like the theory of algorithms.

Definition 5.10. By a yes/no system we mean a 3-tuple S = (P, I, R) where P is
a set called the set of programs, I is a set called the set of inputs, and R : P ×I →
{no, yes} is a function, called the result function. For each p ∈ P, we define

Language(p) = LanguageS(p) = {i ∈ I | Result(p, i) = yes} ⊂ I

and we call Language(p) the set of inputs recognized by p. We say that a set L ⊂ I
is recoginizable by M if it is recognized by some p ∈ P.

Example 5.11. Let P = I = Σ∗ASCII and let P ⊂ Σ∗ASCII be the subset of valid
Python programs (in some agreed upon set of conventions). Output : P × I →
{no, yes} be given as follow:

(1) if p is a valid Python program, then Answer(p, i) is yes if p accepts i, and
otherwise no10; and

(2) if p is not a valid Python program, then then Answer(p, i) = no.

Then LanguageOutput equals the function LanguageRecBy desribed in Subsec-
tion 2.2.

10We caution the reader that if p is a valid Python program, then Answer(p, i) = no simply
means that p does not stop after a finite number of steps and print yes; hence if p on input i never

halts, then by convention Answer(p, i) = no.
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Example 5.12. Every yes/no table of the previous subsection can be viewed as a
yes/no system S = (P, I, R). For example, Example 5.8 fits this formalism, where

I = S = {Dispossessed,Lathe,Left,Leviathan},

P = S′ = {Ursula,Daniel,Ty},
and R(p, i) = yes iff i was (co)written by p. All other examples of the previous
subsection have P = I = {A,B,C}, and R(p, i) = yes iff p thinks that i is clever.

The following is generalized Cantor’s theorem, stated in terms of yes/no systems.

Theorem 5.13. Let S = (P, I, R) be a yes/no system, and let g : I → P be a
surjective function. Then the set

T = {i ∈ I | Result(g(i), i) = no}
is not recognizable.

The special case where I = P and g is the identity function is Cantor’s theorem,
where S there equals I = P.

Proof. Assume to the contrary that LanguageResult(p) = T for some p ∈ P. Since
g is surjective, we can choose an i with g(i) = p. Then either R(g(i), i) equals yes

or no; either way we easily derive a contradiction (the details are an exercise). �

6. Undecidability, Acceptance, Halting, and Delightful Programs

In Section 2, we proved that in the context of Python programs,

T = {p ∈ Σ∗ASCII | p /∈ LanguageRecBy(p)}
is unrecognizable, and concluded that (1) NON-ACCEPTANCE is unrecognizable,
and therefore (2) ACCEPTANCE is undecidable.

In this section we give the more common argument that shows (1) ACCEP-
TANCE is undecidable, and therefore (2) NON-ACCEPTANCE is unrecognizable;
this is done in Section 4.2 of [Sip].

However, our proof of that ACCEPTANCE is undecidably is different—at least
in spirit—from the usual proof in that:

(1) we define a delightful program to be any program that recognizes ACCEP-
TANCE (such programs exist in many contexts, including for Turing ma-
chines, Python programs, oracle Turing machines, etc.);

(2) for any delightful program, we construct an input on which the delightful
program “loops” in the sense that it does not (halt and) answer “yes” or
“no”; and

(3) as an immediate consequence, the ACCEPTANCE problem is undecidable.

Since most of the work in (1)–(3) above is part (2), we spend most of our time prov-
ing a “true result” about certain programs—delightful programs—that do exist, and
derive the undecidability of the acceptance problem as an immediate consequence11.

11 Here we acknowledge a discussion with Yuval Peres, where Yuval emphasized to us the
merit of proving a ”true result” and showing a non-existence theorem as a corollary. For example,
one can prove that that there are infinitely many primes p1 = 2, p2 = 3, p3 = 5, . . . by assuming

that only finitely many exist, say pi is the last, and considering p1 . . . pi + 1. But it is not much
harder to show that

∑
i 1/pi = ∞ (I know of two similar proofs), which is a “true result,” and

immediately implies that there are infinitely many primes.
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However, our proof of (2) above is essentially the usual argument, i.e., that in Sec-
tion 4.2 of [Sip].

It will be convenient for us to prove the above theorem in a very general context,
especially when we later discuss oracle machines. We call the general context a
yes/no/loops systems, which is a generalization of yes/no systems of Definition 5.10
with some additional finer structure (e.g., the no of a yes/no system becomes either
a no or a loops in a yes/no/loops system, but recognizability means the same thing
in both systems).

In the second subsection we do the above restricted to the context of Turing
machines; this subsection closely resembles part of Section 4.2 of [Sip].

6.1. Delightful Programs and Undecidability in Yes/No/Loops Systems.

Definition 6.1. By a yes/no/loops system we mean a triple S =
(P, I, R,EncodeP,EncodeBoth) such that

(1) P, I are sets—the programs and inputs;
(2) R : P × I → {yes, no, loops} and is called the result function,
(3) EncodeP is an injection P → I called the program encoding,
(4) EncodeBoth is an injection P ×I → I called the program and input encod-

ing.

For brevity we write 〈p〉 for EncodeP(p), and 〈p, i〉 for EncodeBoth(p, i). [There is
no ambiguity since the comma “,” distinguishes between 〈p〉 and 〈p, i〉.] Similarly,
for brevity we use the notation S =

(
P, I, R, 〈·〉, 〈·, ·〉

)
for a yes/no/loops system.

Notice that Section 4.2 of [Sip] uses the same notation 〈 〉 and 〈 , 〉.

Example 6.2. Fix some conventions regarding valid Python programs, such that
no Python program contains a symbol σ0 ∈ ΣASCII. Then we may take P = I =
Σ∗ASCII, where 〈p〉 is p itself, and set 〈p, i〉 = pσ0i.

Example 6.3. Say that in the above example all symbols σ0 ∈ ΣASCII can occur in
a valid Python program. Then we can no longer take 〈p, i〉 to pσ0i, and the encoding

〈p, i〉 needs a way to describe when p ends and i begins (i.e., the map 〈p, i〉 def
= pσ0i

may no longer be an injection). In this case, for any string s = σ1 . . . σk of length
k, define Duplex(s) to be the string of length 2k given by

Duplex(s) = σ1σ1σ2σ2σ3 . . . σk−1σkσk.

Let 〈p, i〉 = Duplex(p)ab i: we can detect when p ends, and recover p as p =
σ1σ3 . . . σ2m−3 for the smallest m ∈ N such that σ2m−1 6= σ2m.

Example 6.4. We can restrict the discussion of Turing machines to “standardized
Turing machines” as discussed in class; in this way, and Turing machine, M , can be
expressed a string 〈M〉, over a fixed alphabet, such as {0, 1,#} (with # a separator
and 0, 1 used to express natural numbers); similarly inputs, i, become a subset
of {0, 1,#}∗. Hence we set P = I = {0, 1,#}∗, and if p ∈ P represents a valid
Turing machine, and i ∈ I is a valid input to p it makes sense of whether or not p
accepts i (in which case R(p, i) = yes), or p rejects i (in which case R(p, i) = no),
or something else happens to p on input i (in which case R(p, i) = loops, although
this does not imply that p is necessarily stuck on some infinite loop). If p is not a
valid Turning machine description, or i is not a valid input to p, one can adapt the
convention that R(p, i) is no, although often this convention does not matter.
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Example 6.5. Let Σ be an alphabet, and A ⊂ Σ∗. Then one can speak of a
“Turing machines with oracle A,” that for a fixed A gives a yes/no/loops system.
Similarly for “Python program with oracle A,” etc.

We now define recognizable languages in the same way as we did for yes/no
systems; however, there is a new notion of decidable languages.

Definition 6.6. Let S = (P, I, R, 〈·〉, 〈·, ·〉) be a yes/no/loops system. For each
p ∈ P, the language recognized by p is defined to be

LanguageRecBy(p) = {i ∈ I | R(p, i) = yes} ⊂ I;

we say a subset L ⊂ I is recognizable (in the systems S = (P, I, R) if L =
Recgonizes(p) for some p ∈ P. We define

ACCEPTANCES
def
= {〈p, i〉 | R(p, i) = yes},

and

HALTS
def
= {〈p, i〉 | R(p, i) ∈ {yes, no}}.

By a decider we mean a p ∈ P such that R(p, i) ∈ {yes, no} for all i ∈ I; we say
that L ⊂ I is decidable if some decider recognizes L.

We also define the negation function, denoted ¬, as

¬no = yes, ¬yes = no, ¬loops = loops;

we easily see that ¬¬v = v for all v ∈ {yes, no, loops}.

Definition 6.7. Let S =
(
P, I, R, 〈·〉, 〈·, ·〉

)
be a yes/no/loops system. If p ∈ P,

we call a q ∈ P a mysterious counterpart of p if

∀m ∈ P, R
(
q, 〈m〉

)
= ¬R

(
p,
〈
m, 〈m〉

〉)
.

We say that a p ∈ P is delightful if is recognizes ACCEPTANCES .

For example, a universal Python program is delightful in this context, as is a
universal Turing machine in the context of Turing machines. Of course, a delightful
program can try to determine if p halts on input i by a number of methods, and
if none of these work (and they all eventually terminate) then afterwards one can
run a universal machine.

Algorithmically, it is straightforward to take any Turing machine (any Python
program, etc.), p, and construct a mysterious version of p, by (1) checking if the
input is of the form 〈m〉 for some m ∈ P, then (2) running p on input 〈m, 〈m〉〉,
then (3) negating the answer. This is true in the above examples, and true in similar
examples when 〈〉 and 〈, 〉 and their inverses can be computed by some algorithm.

Hence the term mysterious does not refer to the difficulty in its construction,
but rather in the somewhat mysterious theorem it proves.

Theorem 6.8. Let S = (P, I, R, 〈·〉, 〈·, ·〉) be a yes/no/loops system. Say that
h ∈ P is a delightful program that has a mysterious counterpart d ∈ P. Then:

(1) R(d, 〈d〉) = loops; and
(2) R(h, 〈d, 〈d〉〉) = loops.

In particular, h is not a decider.
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Proof. If (1) is not true, then R(d, 〈d〉) is either yes or no; we will derive a contra-
diction in either case (very similar to Cantor’s theorem): since

∀m ∈ P, R(d, 〈m〉) = ¬R(h, 〈m, 〈m〉〉),
we have

(6) R(d, 〈d〉) = ¬R(h, 〈d, 〈d〉〉).
Assume that R(d, 〈d〉) = yes: then R(h, 〈d, 〈d〉〉) = ¬yes = no, and since h

recognizes ACCEPTANCE, R(d, 〈d〉) cannot equal yes. But this contradicts the
assumption that R(d, 〈d〉) = yes. We argue similarlly if we assume R(d, 〈d〉) = no.
Hence R(d, 〈d〉) = loops.

(2) follows from (1) and (6). �

Corollary 6.9. Let S = (P, I, R, 〈·〉, 〈·, ·〉) be a yes/no/loops system such that each
program has a mysterious counterpart. Then any delightful program, d, must loop on
input

〈
h, 〈h〉

〉
where h is a mysterious version of d. In particular, ACCEPTANCES

is undecidable.

6.2. Delightful Turing Machines and Undecidability.

Definition 6.10. We say that a Turing machine is delightful if it recognizes the
language

ATM = ACCEPTANCETM = {〈M, i〉 | M accepts i}.

For example, a universal Turning machine is delightful. As another example,
given the input 〈M, i〉, you could run certain subroutines to determine if M accepts
i, and if these subroutines do not succeed, then run a universal Turing machine:
for example, your subroutine might check whether or not 〈M〉 is a valid Turing
machine, and, if so, whether or not its δ-function ever transitions to the state
qaccept. There are, of course, more sophisticated tests to try—a lot of practical
algorithms (excluding some video games and electronic media) have a structure
that makes it easy to verify that they always halt.

There might also be some algorithm that is delightful, i.e., that recognizes
ACCEPTANCETM, for reasons that we do not understand (or are, moreover, un-
provable).

By the definition of how a Turing machine works, on any input, a Turing machine
computation results in either: (1) halting in qaccept, (2) halting in qreject, or (3) never
halting. We define the opposite result of (1) to be (2), and of (2) to be (1), and of
(3) to be (3) (hence the opposite result of never halting is, again, never halting).

Definition 6.11. If H is any Turing machine, we say that D is a mysterious form
of H if for all inputs to D of the form 〈M〉, the result of D is the opposite result
of H on input 〈M, 〈M〉〉. [Hence we don’t require anything about how D behaves
on inputs that are not of the form 〈M〉.]

You should convince yourself that there is a mysterious form of any Turing
machine. The term mysterious refers to the theorem below.

Theorem 6.12. Let H be a delightful Turing machine, and D a mysterious form
of H. Then:

(1) D on input 〈D〉 must loop (i.e., never terminates in either qaccept or qreject);
and

(2) H on input 〈D, 〈D〉〉 must loop.
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Proof. Assume that D on input 〈D〉 terminates in qaccept; let us derive a contradici-
ton: since D is a mysterious form of H, H rejects 〈D, 〈D〉〉. But since H recognizes
the acceptance problem, this implies that D does not accept 〈D〉, which contradicts
our assumption.

Similarly the assumption that D terminates in qreject results in a contradiction.
HenceD loops on input 〈D〉, proving statement (1) of the theorem. Statement (2)

follows immediately from (1) and the fact that D is a mysterious version of H. �

Notice that the above theorem is almost identical to the standard proof that
the acceptance problem is undecidable (see also Section 4.2 of [Sip]); however, this
theorem proves a result about Turing machines, H, that actually exist, rather than
merely proving that a certain type of Turing machine does not exist.

Corollary 6.13. The acceptance problem is undecidable (in the context of Turing
machines).

Proof. If the acceptance problem were decided by H, then H would not loop on
any input, contradicting Theorem 6.12. �

7. EXERCISES

The first subsection of exercises are sample problems with solutions, to indicate
the level of detail expected in homework solutions.

Subsections 7.5 and 7.6 will not be covered until we discuss Turing machines in
Chapter 3 of [Sip].

7.1. Sample Exercises with Solutions. People often ask me how much detail
they need in giving explanations for the homework exercises. Here are some exam-
ples. The material in brackets [like this] is optional.

Sample Question Needing a Proof: If f : S → T and g : T → U are sur-
jective (i.e., onto) is g ◦ f (a map S → U) is necessarily surjective? Justify
your answer.

Answer: Yes.
[To show that g ◦ f is surjective, we must show that if u ∈ U , then there

is an s ∈ S such that (g ◦ f)(s) = u.]
If u ∈ U , then since g is surjective there is a t ∈ T such that g(t) = u.

Since f is surjective, there is an s ∈ S such that f(s) = t. Hence

(g ◦ f)(s) = g(f(s)) = g(t) = u.

Therefore each u ∈ U is g ◦ f applied to some element of S, and so g ◦ f is
surjective.
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Sample Question Needing a Counterexample: If f : S → T is injective,
and g : T → U is surjective, is g ◦ f is necessarily injective? Justify your
answer.

Answer: No.
[To show that g ◦f is not necessarily injective, we must find one example

of such an f and g where g ◦ f is not injective.]
Let S = T = {a, b} and U = {c}; let f : S → T be the identity map (i.e.,

f(a) = a and f(b) = b), and let g : T → U (there is only one possible g in
this case) be given by g(a) = g(b) = c.

Then f is injective (since f(a) 6= f(b)) and g is surjective, since U = {c}
and c = g(a)). However g ◦ f is not injective, since (g ◦ f)(a) = c =
(g ◦ f)(b).

Injectivitiy and Surjectivity of a Given Map: If f : N → N is given by
f(n) = 2n+ 5, is f injective? Is f surjective?

Answer: f is injective, because if f(n1) = f(n2), then 2n1 + 5 = 2n2 + 5
and therefore n1 = n2.

[Hence f maps distinct values of N to distinct values of N, i.e., n1 6= n2

implies that f(n1) 6= f(n2).]
f is not surjective, because there is no value n ∈ N such that f(n) = 1: if

such an n existed, then 2n+ 5 = 1 and so n = −2 which is not an element
of N.

7.2. Exercises for Section 2: Cantor’s Theorem, Yes/No Tables, Etc.

Exercise 7.2.1. Let S = {1, 2, 3} and f : S → Power(S) be given by

f(1) = {1, 2}, f(2) = {1, 3}, f(3) = {2, 3}.
What is T = {s | s /∈ f(s)} ?

Exercise 7.2.2. Let S = {1, 2, 3} and f : S → Power(S) be given some map. Can
it be that

T = {s | s ∈ f(s)}
lies in the image of f? [Either give an example of such an f , or explain why it
doesn’t exist. You should give an explanation “from scratch,” without relying on
Cantor’s theorem or any other result from class or these notes.]

Exercise 7.2.3. Let S = {1, 2, 3} and f : S → Power(S) satisfy f(1) = {1, 2}. Let
T = {s | s /∈ f(s)}.

7.2.3(a) Show that T 6= {1, 2}.
7.2.3(b) Without any additional information, can you determine whether or not

2 ∈ T ? To answer this question, you should either (1) prove that 2 ∈ T ,
(2) prove that 2 /∈ T , or (3) give an example of an f such that 2 ∈ T and
another example where 2 /∈ T .

Exercise 7.2.4. Let f : N→ Power(N) be given by

f(n) = {m ∈ N |m+ n/2 is a perfect square} = {m ∈ N |m+ n/2 = k2 for some k ∈ N}
What is T = {s | s /∈ f(s)} ?

Exercise 7.2.5. A department has 3 profs, P = {A,B,C}. It is given that
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Prof. A: thinks that no one in the department works too much, and
Prof. C: thinks that everyone in the department works too much.

For x ∈ P , let

f(x) = {y ∈ P | x thinks that y works too much.}

7.2.5(a) What does the above information tell you about f ?
7.2.5(b) What can you say about

T = {s ∈ P | s thinks that s does not work too much},
and how do you know that T 6= f(A) and T 6= f(C)?

7.2.5(c) Now say that, in addition, you know that
Prof. B: thinks that Profs. A and C work too much, but not themself.

What is

T = {s ∈ P | s thinks that s does not work too much}?

Exercise 7.2.6. A department has 3 profs, P = {A,B,C}. It is given that

Prof. A: thinks that Prof. B works too much,
Prof. B: thinks that Prof. C works too much, and
Prof. C: thinks that Prof. A does not work too much.

Find a bijection g : P → P such that

T = {s ∈ P | s thinks that g(s) does not work too much}
can be determined. Then state this as an instance of generalized Cantor’s theorem.

Exercise 7.2.7. A department has 3 profs, P = {A,B,C}. It is given that

Prof. A: thinks that no one in the department works too much,
Prof. B: thinks that Profs. A and C work too much, but not themself, and
Prof. C: thinks that everyone in the department works too much.

Describe
T = {s | s thinks that s does not work too much}.

Is there a prof who thinks that the elements of T work too much, but not the
elements of P \ T?

Exercise 7.2.8. A department has 3 profs, P = {A,B,C}, who each have access
to three foods, F = {hummus, falafel,pita}. It is given that

Prof. A and B: like and dislike the same foods, and
Prof. C: likes hummus and falafel, but dislikes pita.

Can you descibe a subset

T ⊂ {hummus, falafel,pita}
such that no prof likes the foods in T , and dislikes the other foods (i.e., those in
F \ T )? Exaplain.

Exercise 7.2.9. Complete the proof of Theorem 2.16.

Exercise 7.2.10. The Rose family has four people: Johnny, Moira, David, and
Alexis. Let R be the set consisting of these four people, i.e.,

R = {Johnny, Moira, David, Alexis}.
It is given that:
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Johnny: loves everyone;
Moira: loves (and only loves) Jonny and Moira;
David: loves no one; and
Alexis: loves (and only loves) David and Alexis.

Let

T = {r ∈ R | r does not love themself} = {r ∈ R | r does not love r},

i.e., T is the subset of R that consists of each person who does not love themself 12.

7.2.10(a) What is T? In other words, list the elements between braces ({, }).
7.2.10(b) Explain why if David does not love themself, then the set T cannot equal

the set of people whom David loves, i.e., the empty set, regardless of whom
anyone else loves.

Exercise 7.2.11. Same as Exercise 7.2.10, with the modification that

Johnny: loves (and only loves) Johnny and Moira;
Moira: loves everyone;
David: loves no one; and
Alexis: loves no one.

Exercise 7.2.12. Same as Exercise 7.2.10, with the modification that no one loves
anyone.

Exercise 7.2.13. Consider the setting in Exercise 7.2.10, with the modification
that everyone loves everyone.

7.2.13(a) What is T?
7.2.13(b) Explain why if David loves themself, then the set T cannot equal the set

of people whom David loves, i.e., all of R, regardless of whom anyone else
loves.

Exercise 7.2.14. A village has five residents: Martin, Short, Gomez, Colbert, and
Batiste. Let V be the set consisting of these five people, i.e.,

V = {Martin, Short, Gomez, Colbert, Batiste}.

It is given that:

Martin: thinks that Martin and Short are old, and the rest are not old;
Short: thinks that Martin is old, and the rest are not old;
Gomez: thinks that Martin, Short, and Colbert are old, and the rest are not

old;
Colbert: thinks that Martin and Short are old, and the rest are not old; and
Batiste: thinks that no one is old.

S = {v ∈ V | v does not think of themself as old},

7.2.14(a) What is S?
7.2.14(b) Explain why if Martin thinks of themself as old, then S does not equal the

subset of V whom Martin thinks are old, regardless of what anyone else
thinks.

12We thank Sophie MacDonald who pointed out to us this singular, gender neutral form in
Fall 2021.
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7.2.14(c) Explain why if Batiste thinks that no one is old, then S does not equal the
subset of V whom Batiste thinks are old, regardless of what anyone else
thinks.

Exercise 7.2.15. Consider the same situation as Exercise 7.2.14. Let f : V → V
be the function (map, morphism, etc.) given by:

f(Martin) = Short, f(Short) = Gomez, f(Gomez) = Colbert,

f(Colbert) = Batiste, f(Batiste) = Martin.

(Notice that f is a bijection, and therefore has an inverse function, f−1.) Let

S = {v ∈ V | v does not think of themself as old},

and

S′ = {v ∈ V | v does not think of f(v) as old}.

7.2.15(a) Explain why if Gomez does not think that Gomez, themself, is old, then
the set S above does not equal the set of people whom Gomez thinks are
old, regardless of what anyone else thinks.

7.2.15(b) Explain why if Gomez thinks that Colbert is old, then the set S′ above
does not equal the set

S′′ = {v ∈ V | v thinks of f(v) as old},

regardless of what anyone else thinks.
7.2.15(c) Explain why if Batiste thinks that no one is old, then both sets S and S′

above do not equal the set of people whom Batiste thinks are old, regardless
of what anyone else thinks.

7.2.15(d) If f : V → V were any other function—not necessarily a bijection—would
part (c) still be true?

Exercise 7.2.16. Let L ⊂ Σ∗ASCII be decidable by a Python program. Is L neces-
sarily recognizable? Is Σ∗ASCII \ L necessarily recognizable?

Exercise 7.2.17. Let L ⊂ Σ∗ASCII be recognizable by a Python program. Is L
necessarily decidable? Is Σ∗ASCII \ L necessarily recognizable?

Exercise 7.2.18. Let

L = {p ∈ Σ∗ASCII | p is a valid Python program that halts on at least three distinct inputs to p}.

Is p decidable? Is p recognizable?

Exercise 7.2.19. Which of the following maps are injections (i.e., one-to-one), and
which are surjections (i.e., onto)? Briefly justify your answer.

7.2.19(a) f : N→ N given by f(x) = x+ 1.
7.2.19(b) f : N→ N given by f(x) = x2.
7.2.19(c) f : Z→ Z given by f(x) = x+ 1.
7.2.19(d) f : Z→ Z given by f(x) = x2.

Exercise 7.2.20. If f : S → T and g : T → U are both injective (i.e., one-to-one),
is g ◦ f (which is a map S → U) necessarily injective? Justify your answer.
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Exercise 7.2.21. Let S = {a, b, c} and let f : S → Power(S) any function such
that

a /∈ f(a), b /∈ f(b), c /∈ f(c).

7.2.21(a) Explain why f(a) cannot be all of S.
7.2.21(b) Explain why none of f(a), f(b), f(c) equal S.
7.2.21(c) What is the set

T = {s ∈ S | s /∈ f(s)}?

Exercise 7.2.22. Let S = {a, b, c} and let f : S → Power(S) any function such
that

a /∈ f(a), b ∈ f(b), c /∈ f(c).

7.2.22(a) Explain why f(b) cannot equal {a, c}.
7.2.22(b) Explain why none of f(a), f(c) equal {a, c}.
7.2.22(c) What is the set

T = {s ∈ S | s /∈ f(s)}?

Exercise 7.2.23. Let

S = {Oppenheimer,Barbie, 2001,Encounters}, S′ = {A,B,C,D}.
Say that:

(1) Student A has seen the movie “Oppenheimer;”
(2) Student B has not seen the movie “Barbie;”
(3) Student C has not seen the movie “Encounters at the End of the World;”
(4) Student D has seen the movie “2001: A Space Odyssey;” and
(5) You don’t have any additional information.

For each x ∈ S′, let f(x) be the movies that Student x has seen; hence f is a
function f : S′ → Power(S).

7.2.23(a) What can you assert about f(A)? What do you NOT know about f(A)?
7.2.23(b) Give a surjection g : S → S′ such that for each x ∈ S you can answer the

question “is x in f(g(x))?”
7.2.23(c) Say that x is a student, perhaps one of A,B,C,D, but perhaps a different

student. Construct a subset T ⊂ S such that if x seen the movies in T and
has not seen the movies not in T , then x cannot equal any of A,B,C,D.

Exercise 7.2.24. Let

S = {Oppenheimer,Barbie, 2001,Encounters}, S′ = {A,B,C,D}.
Say that you know that:

(1) the movie “Oppenheimer” was seen by A,B,C and not by D;
(2) the movie “Barbie” was seen by A,C and not by B,D;
(3) the movie “2001: A Space Odyssey” was seen by C;
(4) the movie “Encounters at the End of the World” was not seen by C.

For each x ∈ S′, let f(x) be the movies that Student x has seen; hence f is a
function f : S′ → Power(S). With only the above information, is there a surjection
g : S → S′ such that for each x ∈ S you can answer the question “is x in f(g(x))?”
Explain. [Hint: It may help to draw a graph/diagram with the elements of S on
the left, elements of S′ on the right, and an arrow from s ∈ S to s′ ∈ S′ if you
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can answer the question “was s seen by s′?” However, since each of S, S′ has
only 4 elements, you can probably solve this without a digram, say by considering
A,B,D.]

Exercise 7.2.25. Are the following statements true or false? If they are true,
explain why; if false, give a counterexample. In these statements, Σ = ΣASCII, and
L1, L2 ⊂ Σ∗ = Σ∗ASCII are subsets.

7.2.25(a) If L1 is recognizable, then L1 is decidable.
7.2.25(b) If L1 is unrecognizable, then L1 is undecidable.
7.2.25(c) If L1 is decidable, then L1 is recognizable.
7.2.25(d) If L1 is undecidable, then L1 is unrecognizable.
7.2.25(e) If L1, L2 are decidable, then L1 ∪ L2 is decidable.
7.2.25(f) If L1, L2 are undecidable, then L1 ∪ L2 is undecidable.
7.2.25(g) If L1, L2 are recognizable, then L1 ∪ L2 is recognizable.
7.2.25(h) If L1, L2 are unrecognizable, then L1 ∪ L2 is unrecognizable.
7.2.25(i) If L1 is decidable, then Σ∗ \ L1 is decidable.
7.2.25(j) If L1 is recognizable, then Σ∗ \ L1 is recognizable.
7.2.25(k) If L1 is recognizable, then L1 is decidable.
7.2.25(l) If L1, L2 are decidable, then L1 \ L2 is decidable.

7.2.25(m) If L1, L2 are recognizable, then L1 \ L2 is recognizable.

Exercise 7.2.26. For each of the following languages, L, say whether or not L is
decidable and whether or not it is recognizable. Here σ0 is some element of ΣASCII

such that no valid Python program contains σ0 (in class we imagined this to be σ0

equal to 〈BELL〉, the “bell symbol” in ΣASCII). Justify your answer (no points
are given for an answer without explanation).

7.2.26(a) The language of strings pσ0i such that p accepts i after running for 10 steps.
7.2.26(b) The language of strings pσ0i such that p rejects i.
7.2.26(c) The language of strings pσ0i such that p halts on input i.
7.2.26(d) The language of strings pσ0i such that p accepts or loops on input i.
7.2.26(e) The language of valid Python programs, p, such that p rejects at least one

input, i.e., at least one i ∈ Σ∗ASCII.
7.2.26(f) The language of valid Python programs, p, such that p accepts at least two

values of i ∈ Σ∗ASCII.
7.2.26(g) The language of valid Python programs, p, such that p accepts all its inputs.

Exercise 7.2.27. 13 Let i1, i2, . . . be a sequence elements of Σ∗ASCII such that each
element of Σ∗ASCII appears exactly once in this sequence.14 Say that p is a Python
program, and we want to know if p accepts at least one input. We can do this by
the following algorithm:

Phase 1: simulate p for one step on input i1;
Phase 2: simulate p for two steps on i1 and one step on i2;
Phase 3: simulate p for three steps on i1, for two steps on i2, and for one

step on i3;
etc.:

13 This question arose in class, September 2023; we thank, in particular, Vishnu Yadavalli for
the question, and Ellen Lloyd for an algorithm given below.

14 In CPSC 421/501, we typically do this by listing the strings according to their length (and
lexicographical order for strings of equal length), so that i1 = ε (which is the single string of length
0), i2, . . . , i129 are the elements of ΣASCII, i130, . . . , i1+128+1282 are the elements of Σ2

ASCII, etc.
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Phase k: on the k-th phase, for j = 1, 2, . . . , k we simulate p for k − j + 1
steps on ij ;

Consider the total number of steps run in each phase; for example, Phase 3 has
6 steps total, and the total number of steps in Phases 1 to 3 is 1 + 3 + 6 = 10.
(Our convention is that when you simulate p on an input for some number of steps,
you forget all previous simulations of p on any input.) Say that p accepts only one
input, namely i`, and that p requires m program steps to do so.

7.2.27(a) Show that the total number of steps until the above algorithm stops (i.e.,
when it detects that p accepts i` after m steps) is exactly

(1/6)(`+m)3 +O(1)(`+m)2,

where the O(1) refers to an “order 1 term,” i.e., a function of `,m that is
bounded by a constant for ` + m sufficiently large. By exactly we mean
that (1/6)(` + m)3 + O(1)(` + m)2 is both a lower bound and an upper
bound (for different values of O(1)).

7.2.27(b) Say that we use the following variant: for all k ∈ N, the k-the phase consists
of simulating k steps of p on each of i1, . . . , ik. Show that the total number
of steps needed is exactly

(1/3)(max(`,m))3 +O(1)(max(`,m))2.

7.2.27(c) Say that we use the following variant: for all k ∈ N, the k-the phase
consists of simulating 5k steps of p on each of i1, . . . , i5k. Show that the
total number of steps needed is exactly c(max(`,m))3 +O(1)(max(`,m))2

for some constant, c. What is c ?
7.2.27(d) Using the previous part, for any constant c > 0, give a variant of the above

algorithm that takes at most c(max(`,m))3 +O(1)(max(`,m))2 steps.

Exercise 7.2.28. Continuing with the setup and notation as in the previous prob-
lem:

7.2.28(a) Describe a variant of the above algorithm that uses no more than
O(1)(max(`,m))2 steps.

7.2.28(b) Prove that there is a constant c > 0 such that any such algorithm requires
at least c(max(`,m))2 steps for max(`,m) sufficiently large, and give such
a constant, c. [This implies that there is a c > 0 for which this holds for
all `,m ∈ N, but it is simpler to find a c that holds when max(`,m) is
sufficiently large.]

7.3. Paradox Exercises.

Exercise 7.3.1. Consider Paradox 3 of Section 3. [This is usually called the “Berry
Paradox,” although likely due to Russell; feel free to look it up somewhere.] The
following exercise is giving a simpler version of this “paradox.”

7.3.1(a) Let W be the four element set

W = {one, two, plus, times}.

Ascribe a “meaning” to each sentence with words from W (i.e., each string
over the alphabet W ) in the usual way of evaluating expressions, so that

one plus two times two means 1 + 2× 2 = 5,



30 JOEL FRIEDMAN

plus times two plus is meaningless,

and each sentence either “means” some positive integer or is “meaningless.”
Show that every positive integer is the “meaning” of some sentence with
words from W .

7.3.1(b) Show, more precisely, that there is a constant, C, such that any positive
integer, n, can be described by a W -sentence of at most 1 + C(log2 n)2

words.
7.3.1(c) Consider the five element set

U = W ∪ {moo}
with the following meaning for moo:
(a) if it appears anywhere after the first word of a sentence, then the

sentence is meaningless,
(b) if it appears only once and at the beginning of a sentence, then we

evaluate the rest of the sentence (as usual), and
(i) if the rest evaluates to the integer k, then the sentence means

“the smallest positive integer not described by a sentence of k
words or fewer,” and

(ii) if the rest evaluates to meaningless, then the sentence is mean-
ingless.

For example, “moo moo” and “moo plus times two” are meaningless, and
“moo two times two” means “the smallest positive integer not described
by a sentence of four words or fewer.” What is the meaning of “moo one”?

7.3.1(d) What seems paradoxical in trying to ascribe a meaning to “moo two”?
What do you think is the “best” interpretation of “moo two”, and why
won’t this completely satisfy your notion of the word “describe”? [This
question has a few correct answers, none particularly better than the others.
If this last question seems strange or wrong, make up your own version of
this question and answer it.]

Exercise 7.3.2. Explain why the following questions can’t be answered either yes
(true) or no (false).

7.3.2(a) In a certain village, Chris holds accountable each person who does not
hold themself accountable (and no one else). Does Chris hold themself
accountable?

7.3.2(b) In a certain village, Geddy is blamed by each person who does not blame
themself (and by no one else). Is Geddy blamed by themself?

7.3.2(c) In a certain village, Sandy teaches each person who does not teach themself
(and no one else). Does Sandy teach themself?

Exercise 7.3.3. Say that we assume that no set should contain itself (in a par-
ticular collection of axioms about set theory that we are currently using). If so,
describe C given by

C = {S | S is a set such that S /∈ S}.
Explain why C cannot be a set.

7.4. Exercises for Section 5: Countable Sets, Yes/No Tables, Etc.

Exercise 7.4.1. Let N2 = N× N, i.e.,

N2 = {(n1, n2) | n1, n2 ∈ N}.
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(See Chapter 0 of [Sip].)

7.4.1(a) Show that N2 is countable.
7.4.1(b) Show that N3 = N× N× N is countable.

Exercise 7.4.2. Let C1, C2, . . . be a sequence of countably infinite sets. Is C1 ∪
C2∪. . . countably infinite? Justify your answer. (You get no credit for answering
“yes” or “no” without explanation.)

Exercise 7.4.3. Recall that for n ∈ N, [n] denotes {1, 2, . . . , n} (which is therefore
an alphabet).

7.4.3(a) Is [2]∗ countably infinite? Justify your answer.
7.4.3(b) Describe a simple bijection f : [2]∗ → [4]∗ (i.e., find a bijection that does

not rely on bijections from these sets to N).
7.4.3(c) Describe a simple bijection f : [2]∗ → [8]∗.
7.4.3(d) Describe a simple bijection f : [4]∗ → [8]∗, based on your answers to (a)

and (b).
7.4.3(e) Describe a surjection [8]→ [7], and use it to give a surjection [8]∗ → [7]∗.
7.4.3(f) Using parts (b) and (e), describe a simple surjection [2]∗ → [7]∗.

Exercise 7.4.4. A real number, x, is algebraic if it is the solution to an equation
of the form

a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0

where a0, . . . , an ∈ N for some n ∈ N (where a0 6= 0). Is the set of algebraic numbers
countable? Justify your answer. [Hint: You may use the fact that a polynomial of
degree n has at most n roots.]

Exercise 7.4.5. Which of the following sets are countably infinite? Justify your
anwer.

7.4.5(a) The negative rational numbers.
7.4.5(b) The real numbers in the closed interval [1, 2].
7.4.5(c) The real numbers in the open interval (1, 2).
7.4.5(d) The set of all functions Σ∗ → {yes, no}, where Σ is an alphabet.
7.4.5(e) The set of all functions {yes, no} → Σ∗, where Σ is an alphabet.
7.4.5(f) The set of all functions Σ∗ → Σ∗, where Σ is an alphabet.

Exercise 7.4.6. A department has 3 profs, P = {A,B,C}, who each have access
to three foods, Q = {hummus, falafel,pita}. It is given that

Prof. A: likes pita, and dislikes falafel (and we don’t know about hummus),
Prof. B: likes falafel (and we don’t know about pita and hummus), and
Prof. C: likes hummus and falafel, but dislikes pita.

7.4.6(a) Write a yes/no table for the question “does Prof. p like food q” (ranging
over all p ∈ P and q ∈ Q)?

7.4.6(b) Describe a surjection g : Q→ P such that for all q ∈ Q one can answer the
question “does Prof. g(q) like q?”

7.4.6(c) Use g and Theorem 2.16 to give a

T ⊂ {hummus, falafel,pita}

such that no prof likes the foods in T , and dislikes the other foods (i.e.,
those in F \ T ).
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Exercise 7.4.7. Consider the setting of Exercise 7.2.10. Draw a yes/no table of
who loves whom, and explain why the set T is said to be constructed “by diago-
nalization.”

Exercise 7.4.8. Consider the setting of Exercise 7.2.11. Draw a yes/no table of
who loves whom, and explain why the set T is said to be constructed “by diago-
nalization.”

Exercise 7.4.9. Consider the setting of Exercise 7.2.12. Draw a yes/no table of
who loves whom, and explain why the set T is said to be constructed “by diago-
nalization.”

Exercise 7.4.10. Consider the setting of Exercise 7.2.13. Draw a yes/no table of
who loves whom, and explain why the set T is said to be constructed “by diago-
nalization.”

INSERT OTHER PROBLEMS HERE.

7.5. Exercises on Universal Turing Machines: Mechanics.

Exercise 7.5.1. Let Σ = {1, 2}, let L = Σ∗, and let ΣTM = {0, 1,#, L,R}.
7.5.1(a) Give a Turning machine M = (Q,Σ,Γ, δ, q0, qacc, qrej, blank) that (1) recog-

nizes L, (2) has q0 different from both qacc and qrej, and (3) has the product
|Q| |Γ| as small as you can subject to (1) and (2) (or reasonably small, see
the rest of the question).

7.5.1(b) Giave a standardized Turing machine that recognizes the same language as
the above machine.

7.5.1(c) Write the above standardized Turing machine as a word/string over ΣTM

as described in class.
7.5.1(d) Write the above standardized Turing machine as a word/string over ΣTM

and append to it the input 2121, as described in class.
7.5.1(e) Explain—without actually writing down the word/string—how to Write

the above standardized Turing machine as a word/string over ΣTM and
append to it the input 212121, as described in class.

Exercise 7.5.2. Same problem as Exericse 7.5.1 for the language L = ∅.

Exercise 7.5.3. Same problem as Exericse 7.5.1 for the language L described by
the regular expression 1(1 ∪ 2)∗.

Exercise 7.5.4. Same problem as Exericse 7.5.1 for the language L described by
the regular expression (1 ∪ 2)∗2.

Exercise 7.5.5. Is the set of standardized Turing machines countable or uncount-
able? Explain.

Exercise 7.5.6. Is the set/class/family/etc. of (all) Turing machines countable or
something else (e.g., uncountable, so large that it isn’t even a class, etc.)? Explain.

INSERT MORE EXERCISES HERE

7.6. A Hierarchy of Acceptance, a Hierarchy of Halting.

Exercise 7.6.1. Let ΣTM = {0, 1,#, L,R}. Let π : ΣTM → [5] = {1, . . . , 5} be an
arbitrary bijection.
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7.6.1(a) If w = σ1 . . . σn ∈ Σ∗TM is a word, let

π(w) = π(σ1) . . . π(σn).

Does this give a bijection between elements of Σ∗TM and elements of [5]∗?
Explain.

7.6.1(b) If L is a language over ΣTM, let

(7) π(L) = {π(w) | w ∈ L}.
Does this give a bijection between laguages over Σ∗TM and languages over
[5]∗? Explain.

Exercise 7.6.2. Let s ∈ N, and let Σ = [s] = {1, . . . , s}.
7.6.2(a) Explain how to define a standardized 2-tape Turing machine—using the

idea of a regular standardized (1-tape) Turing machine—in a way that
any 2-tape Turing machine for a language over Σ has an equivalent stan-
dardized machine that returns the same result (accept, reject, loops, i.e.,
yes, no, loops).

7.6.2(b) Do the same for k-tapes for k ∈ N for any k ≥ 3.
7.6.2(c) Can you define a standardized Turing machine that allows you to first write

down a value of k and then describe a standardized k-tape machine? Ex-
plain.

7.6.2(d) Let s′ ∈ N, Σoracle = [s′] = {1, . . . , s′}, and A ⊂ Σ∗. Can you define a
standardized oracle Turing machine that has access to a single oracle A,
and some standardized Turing machine as in part (c)? What conventions
do you have specify?

Exercise 7.6.3. Let A ⊂ Σ∗ be any fixed language, A, over an alphabet Σ of the
form {1, . . . , s} for some s ∈ N. Let P be the set of all standardized oracle Turing
machines that can make an oracle query to A, standardized appropriately (one way
of standardizing is given in the above exercises). Let I = Σ∗.

7.6.3(a) Show that the result of running any oracle Turing machine in P on an input
in I gives an expressive program-input system.

7.6.3(b) Show that this expressive program-input system has a universal program.
7.6.3(c) Conclude that this program-input has a delightful program.
7.6.3(d) Conclude that the acceptance problem in this program-input is undecidable,

i.e., there is no Turing machine with oracle A that decides the acceptance
problem for Turing machines with oracle A.

Exercise 7.6.4. Let A ⊂ Σ∗ be any fixed language, A, over an alphabet Σ of the
form {1, . . . , s} for some s ∈ N. Let us further assume that s ≥ 5, so that we may
identify ΣTM with a subset of Σ = [s], and that we have a standardization of all
multitape Turing machines as described in the problems above. Let

B = ACCEPTANCEA = ACCEPTANCEoracle A.

7.6.4(a) Show that if M is any oracle Turing machine with an oracle call to A, and
w is an input to M , then after some preprocessing one can make a single
oracle call to B to determine whether or not M accepts w.

7.6.4(b) Hence conclude that if an oracle Turing machine MA decides a language,
L, then L is also decided by some oracle Turing machine (M ′)B (i.e., an
oracle machine that calls B, rather than A).
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7.6.4(c) Using DecidableΣ(A) to denote the class of languages over Σ decidable with
an oracle A Turing machine, conclude that

Decidable(A) ⊂ Decidable(B) = Decidable
(
ACCEPTANCEA

)
7.6.4(d) Explain why B ∈ Decidable(B) (immediately) and, from the above, B /∈

Decidable(A).
7.6.4(e) Conclude that there is a hierarchy of Turing machine oracles

∅, ACCEPTANCE, ACCEPTANCEACCEPTANCE, ACCEPTANCEACCEPTANCEACCEPTANCE

, . . .

of successively more powerful oracles, in the sense that there is a sequence
of strict inclusions

Decidable(∅) ⊂ Decidable(ACCEPTANCE) ⊂ Decidable
(

ACCEPTANCEACCEPTANCE
)
⊂ · · ·

Exercise 7.6.5. Same exercise as above, except with ACCEPTANCE replaced
everywhere with HALT.

Exercise 7.6.6. In the sequence

∅, ACCEPTANCE, ACCEPTANCEACCEPTANCE, ACCEPTANCEACCEPTANCEACCEPTANCE

, . . . ,

should the first term be ∅ or its complement, Σ∗? Does it really matter?

Appendix A. ∗Most Languages are Unrecognizable

There are a number of well-known senses that say that “most” languages are un-
recognizable. If you believe that “most” elements of an uncountable set lie outside
of any given countable subset, then that is enough. Otherwise here are some other
ways to make sense of this statement; these require more mathematical sophistica-
tion than we typically assume in CPSC 421/501 (as of 2023). All these are based
on convincing yourself that any countable subset of either [0, 1] or Power(Σ∗) has
0 “measure” or “probability” in a space of positive measure.

(1) If Σ is any finite alphabet, there is a measure15 on Power(Σ∗) that for any
finite S ⊂ Σ∗ assigns the measure 1/2|S| to the subset of Power(Σ∗) con-
sisting of all languages containing S; moreover, it is a probability measure,
assigning the measure 1 to Power(Σ∗)). Any countable subset of Power(Σ∗)
can be covered by a countable collection of sets whose measure is arbitrarily
small, and therefore any countable set has measure 0.

(2) Build a surjective map Power(Σ∗)→ [0, 1] such that each real number has
at most 2 preimages; convince yourself that for this reason, any countable
set in Power(Σ∗) should have zero measure.

(3) Convince yourself that any countable subset of [0, 1] has zero measure. If
A ⊂ N, we define

Density(A,n) =
|A ∩ [n]|

n
.

If
lim
n→∞

Density(A,n)

15in the sense of measure theory; the values of this measure are uniquely determined on the

smallest σ-field (i.e., σ-algebra) containing Contains(S), where S varies over all finite subsets of
Σ∗ and where Contains(S) is the subset of languages over Σ that contain S. (One could extend

this to the smallest σ-field containing these subsets and all the outer measure 0 subsets.)
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has a limit, we call this limit the density of A (hence the density of odd
numbers is 1/2). To extend this idea, note that 0 ≤ Density(A,n) ≤ 1, and
hence for any A we can define its density for a subsequence of n over which
the limit exists; we can get such a density function defined unambiguously
for all A ⊂ N by setting

DensityU(A) = lim
{n}⊂U

Density(A,n)

with the choice of an ultrafilter, U; assuming the ultrafilter is non-principal,
it follows that this limit agrees with the limit n → ∞ of Density(A,n)
when it exists. Then the densities of a countable subset of Power(N) is
some countable set in [0, 1]. (Taking an appropriate bijection Zn → N and
using the same idea we see that Zn is an amenable group.)

Appendix B. Decision Problems, Alphabets, Strings, and Languages:
More Details

In this section we explain the connection between algorithms, decision problems,
and some of the definitions in Chapter 0 of [Sip]. We also discuss descriptions,
needed starting in Chapter 3 of [Sip].

B.1. Decision Problems and Languages. The term decision problem refers to
the following type of problems:

(1) Given a natural number, n ∈ N, give an algorithm to decide if n is a prime.
(2) Given a natural number, n ∈ N, give an algorithm to decide if n is a perfect

square.
(3) Given a natural number, n ∈ N, give an algorithm to decide if n can be

written as the sum of two prime numbers.
(4) Given sequence of DNA bases, i.e., a string over the alphabet {C,G,A, T},

decide if it contains the string “ACT” as a substring.
(5) Given an ASCII string, i.e., a finite sequence of ASCII characters16, decide

if it contains the string “CPSC 421” as a substring.
(6) Given an ASCII string, decide if it contains the string “vacation” as a

substring.
(7) Given an ASCII string, decide if it is a valid C program.

Roughly speaking, such problems take an input and say “yes” or “no”; the term
decision problem suggests that you are looking for an algorithm17 to correctly say
“yes” or “no” in a finite amount of time.

To make the term decision problem precise, we use the following definitions.

(1) An alphabet is a finite set, and we refer to its elements as symbols.
(2) If A is an alphabet, a string over A is a finite sequence of elements of A;

we use A∗ to denote the set of all finite strings over A.
(3) If A is an alphabet, a language over A is a subset of A∗.

16 ASCII this is an alphabet of 256 letters that includes letters, digits, and common
punctuation.

17 The term algorithm means different things depending on the context; in CPSC 421 we will
study examples of this (e.g., a DFA, NFA, deterministic Turing machine, a deterministic Turing
machine with an orale A, etc.
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(People often use letter instead of symbol, and word instead of string.) For example,
with D = {0, 1, . . . , 9}, we use

PRIMES = {s ∈ D∗ | s represents a prime number}

and

SQUARES = {s ∈ D∗ | s represents a perfect square}
Here are examples of elements of PRIMES:

421, 3, 7, 31, 127, 8191, 131071, 524287, 2147483647

where we use the common shorthand for strings:

127 for (1, 2, 7), 131071 for (1, 3, 1, 0, 7, 1), etc.

So PRIMES is a language over the alphabet D; when we say “the decision
problem PRIMES” we refer to this language, but the connotation is that we are
looking for some sort of algorithm to decide whether or not a number is prime.
Here are some examples of strings over D that are not elements of the set PRIMES:

221, 320, 420, 2019.

B.2. Descriptions of Natural Numbers. From our discussion of PRIMES
above, it is not clear if we consider 0127 to be element of PRIMES; we need to
make this more precise. It is reasonable to interpret 0127 as the integer 127 and
to specify that 0127 ∈ PRIMES. However, in [Sip] we will be careful to distinguish
a natural number n ∈ N and

〈n〉 meaning the “description” of n,

i.e., the string that represents n (uniquely, according to some specified convention),
so the natural number 127 has a unique description as the string (1, 2, 7), and
the string (0, 1, 2, 7) is not the description of 127. With this convention, 0127 /∈
PRIMES; this is also reasonable.

[Later in the course we will speak of “the description of a graph” (when studying
graph algorithms), “the description of a Boolean formula” (when studying SAT,
3SAT), “the description of a Turing machine,” etc. In these situtations it will be
clear why the input to an algorithm should be a description of something (as a
string over some fixed alphabet) rather than the thing itself.]

If n = Z with n = 127, the symbol 〈n〉, meaning the “description of n” can refer
to

(1) “1111111,” when 〈n〉 = 〈n〉2 means the “binary representation of n” (a
unique string over the alphabet {0, 1});

(2) “11201,” when 〈n〉 = 〈n〉3 means the “base 3 representation of n” (a unique
string over the alphabet {0, 1, 2});

(3) “one hundred and twenty-seven,” when 〈n〉 = 〈n〉English means the “English
representation of n” (a unique string over the ASCII alphabet, or at least
an alphabet containing the English letters, a comma, a dash, and a space);

(4) “cent vingt-sept,” similarly for French, 〈n〉 = 〈n〉French

(5) “wa’vatlh wejmaH Soch,” similarly for Klingon18, 〈n〉 = 〈n〉Klingon;
(6) and good old “127,” when 〈n〉 = 〈n〉10 means the “decimal representation

of n.”

18 Source: https://en.wikibooks.org/wiki/Klingon/Numbers.

https://en.wikibooks.org/wiki/Klingon/Numbers
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Note that haven’t yet specified whether or not ε, the empty string, is considered
to be an element of PRIMES.

B.3. More on Strings. Chapter 0 of [Sip] uses the following notion:

(1) if A is an alphabet and k ∈ Z≥0 = {0, 1, 2 . . .}, a string of length k over A
is a sequence of k elements of A;

(2) we use Ak to denote the set of all strings of length k over A;
(3) equivalently, a string of length k over A is a map [k] → A where [k] =
{1, . . . , k};

(4) by consequence (or convention) A0 = {ε} where ε, called the empty string,
is the unique map ∅ → A;

(5) a string over A is a string over A of some length k ∈ Z≥0;
(6) therefore A∗ is given as

A∗ =
⋃

k∈Z≥0

Ak = A0 ∪ A1 ∪ A2 ∪ · · ·

(7) strings are sometimes called words in other literature;
(8) a letter or symbol of an alphabet, A, is an element of A.
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