SUPPLEMENTAL FINAL EXAM PRACTICE, CPSC 421/501, FALL 2023

JOEL FRIEDMAN

DOCUMENT UNDER CONSTRUCTION AND MAY BE INCOMPLETE

Copyright: Copyright Joel Friedman 2023. Not to be copied, used, or revised without explicit written permission from the copyright owner.

- (1) Which of the following are true? Explain: explain why they are (always) true, or give a counterexample and explain why this is a counterexample.
 - (a) If the Boolean formulas associated to an NP-complete language over the alphabet $\Sigma = \{T, F\}$ don't have polynomial size circuits, it follows that $P \neq NP$.
 - (b) If the Boolean formulas associated to an NP-complete language over the alphabet $\Sigma = \{T, F\}$ don't have polynomial size formulas, it follows that $P \neq NP$.
 - (c) As of November 2023, we know that PARTITION is NP-complete.
 - (d) As of November 2023, it is possible that $a\{a, b\}^*b$ is NP-complete.
 - (e) Threshold_{2,n} can be expressed by formulas of size $O(n \log_2 n)$.
 - (f) Threshold_{2,n} can be expressed by circuits of size $O(n \log_2 n)$.
 - (g) Parity_n can be expressed by formulas of size $O(n \log_2 n)$.
 - (h) Parity_n can be expressed by formulas of size $O(n^2)$.
- (2) Write a 3CNF formula that is satisfiable for all values of $x_1, \ldots, x_5 = T, F$ iff

$$(x_1) \wedge (x_2 \vee x_3 \vee x_4 \vee \neg x_5) = T;$$

(you may add additional variables).

(3) Is there a 3CNF formula in x_1, \ldots, x_5 that is equivalent to $x_2 \lor x_3 \lor x_4 \lor \neg x_5$? Explain.

(4) MORE PROBLEMS MAY BE ADDED LATER.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca *URL*: http://www.cs.ubc.ca/~jf

Research supported in part by an NSERC grant.