SUPPLEMENTAL FINAL EXAM PRACTICE, CPSC 421/501, FALL 2023

JOEL FRIEDMAN

DOCUMENT UNDER CONSTRUCTION AND MAY BE INCOMPLETE

Copyright: Copyright Joel Friedman 2023. Not to be copied, used, or revised without explicit written permission from the copyright owner.
(1) Which of the following are true? Explain: explain why they are (always) true, or give a counterexample and explain why this is a counterexample.
(a) If the Boolean formulas associated to an NP-complete language over the alphabet $\Sigma=\{T, F\}$ don't have polynomial size circuits, it follows that $\mathrm{P} \neq \mathrm{NP}$.
(b) If the Boolean formulas associated to an NP-complete language over the alphabet $\Sigma=\{T, F\}$ don't have polynomial size formulas, it follows that $\mathrm{P} \neq \mathrm{NP}$.
(c) As of November 2023, we know that PARTITION is NP-complete.
(d) As of November 2023, it is possible that $a\{a, b\}^{*} b$ is NP-complete.
(e) Threshold $2, n$ can be expressed by formulas of size $O\left(n \log _{2} n\right)$.
(f) Threshold ${ }_{2, n}$ can be expressed by circuits of size $O\left(n \log _{2} n\right)$.
(g) Parity ${ }_{n}$ can be expressed by formulas of size $O\left(n \log _{2} n\right)$.
(h) Parity ${ }_{n}$ can be expressed by formulas of size $O\left(n^{2}\right)$.
(2) Write a 3CNF formula that is satisfiable for all values of $x_{1}, \ldots, x_{5}=T, F$ iff

$$
\left(x_{1}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4} \vee \neg x_{5}\right)=T
$$

(you may add additional variables).
(3) Is there a 3CNF formula in x_{1}, \ldots, x_{5} that is equivalent to $x_{2} \vee x_{3} \vee x_{4} \vee \neg x_{5}$? Explain.
(4) MORE PROBLEMS MAY BE ADDED LATER.

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf

Research supported in part by an NSERC grant.

