Midterm Practice - Some Solutions Oct. 30, 2023
Contents:

- Homework 7: Individual, Problem (3)
- Midterm Practice 2021: Same solutions
- Midterm Practice 2023: Same solutions

Homework 7: Individual, Problem (3)
Let $L=C_{1}^{r e v}=\left\{\omega \in \Sigma^{*} \mid \omega\right.$ begins with an a $\}$

$$
\begin{gathered}
\sum=\{a, b\} \cdot \text { Let } \\
S_{1}=\operatorname{Arcfut}_{L}(\varepsilon)=a \Sigma^{*} \\
S_{2}=\operatorname{AccFut}_{L}(a)=\Sigma^{*} \\
S_{3}=\operatorname{AccFut}_{L}(b)=\varnothing
\end{gathered}
$$

Where

Then: Since $S_{3}=\varnothing$ and $S_{1}, S_{2} \neq \varnothing$, we have $S_{3} \neq S_{1}$ and $S_{3} \neq S_{2}$.
Since $\varepsilon \in S_{2}$ but $\varepsilon \notin S_{1}, S_{2} \neq S_{1}$.
Hence S_{1}, S_{2}, S_{3} are distinct, and hence any

DFA accepting $L=C_{1}^{\text {rev }}$ requires at least 3
States

Midterm Practice 2021: Some solutions
(ignoring problems $5,6,9$)
$(2021,1)$ This is very similar to Group Homework 7 ,
Problem (2), which does the same for
C_{3}, instead of C_{4}.
(la) Accfut ${C_{4}}(a a a)=$ Accfut $_{C_{4}}($ baa $)$,
Since both:
(i) don't contain \& (aaa, baal $\left.\& C_{4}\right)$;
(ii) both contain \sum, since for $\sigma_{1} \in \sum$, both $a a a \sigma$, baaag, have their $4^{\text {th }}$ to last symbol equal to a;
(iii) similarly, both contain \sum^{2}, Σ^{3};
(iv) for any $S \in \sum$ of length 4 or more, and for any $w \in \Sigma^{*}$, wa $\in C_{4}$ iff $s \in C_{4}$
(since the $4^{\text {th }}$ last symbol of wa lies in 5).
Hence

$$
\begin{aligned}
\text { Accfut }_{C_{4}}(\text { aaa }) & =\sum^{1} \cup \sum^{2} \cup \Sigma^{3} \cup C_{4} \\
& =\text { Accfut }_{C_{4}}(\text { baa })
\end{aligned}
$$

($|b, l a| d$,$) Similar to Homework 7, Individual$ Problem 3.
$(2021,2)$ Similar to $(2021,1)$.
(2021,3) Since $a^{n} \notin L$ if $n \geq 8$, we have $a^{n} \in L \Leftrightarrow a^{n+1} \in L$ for $n \geq 8$. Hence L has period 1. Hence the smallest DFA for L has cyclic part

$$
0 \bigcirc a
$$

Since $a^{7} \in L$, the last state before $Q \supseteq a$ is accepting, and hence the smallest $D F A$ is of the form

$$
\mathrm{O} \xrightarrow{a} \mathrm{O} \xrightarrow{a} \mathrm{O} \xrightarrow{a}\left(\mathrm { O } \xrightarrow { a } \mathrm { O } \xrightarrow { a } \mathrm { O } \xrightarrow { a } \mathrm { O } \xrightarrow { a } \left(\mathrm{O}{ }^{a} \mathrm{O} \mathrm{O}^{a}\right.\right.
$$

which has 9 states.
Alternative 1: Since L has period 1 and $a^{n} \notin L$ for $n \geq 8$, the fact that $a^{7} \in L$ shows that

$$
a^{n} \in L \Leftrightarrow a^{n+1} \in L
$$

holds for $n \geq 8$, but not for $n \geqslant 7$. Hence, So by Homework $5,(2 e)$ [which is the same $\operatorname{as}(6.1 .2(e))$ in the handout $], n_{0}=8$ and $p=1$ and the smallest DFA for L has $n_{0}+p=9$ states

Alternative 2: Use Homework 5, Prob (1), i.e. 6.l.1, any $D F A$ must have at least a states, and

$$
\rightarrow \mathrm{O} \xrightarrow{a} \mathrm{O} \stackrel{a}{\rightarrow} \mathrm{O} \xrightarrow{a} \mathrm{O} \mathrm{O}^{a} \mathrm{O} \mathrm{O} \xrightarrow{a} \mathrm{O} \xrightarrow{a}\left(\mathrm{O}^{a} \mathrm{O}^{a}\right.
$$

accepts L and has 9 states
Alternative 3: Use Myhill-Nerude: for all n, consider the longest ward in $\operatorname{Accfut}_{L}\left(a^{n}\right)$. Details omitted.

Second part: If $\Sigma=\{a, b\}$, you still need ≥ 9 states, since by erasing the arrows labelled "b" from any $\triangle F A$ for Lover $\sum=\{a, b\}$, you get a DFA for Laver $\sum=\{a\}$. But

recognizes L and has of states.
Alternative 1: Use Myhill-Nerode
$(2021,4)$ Similar to (3): L has period 4, and $n_{0}=3$, i.e. $a^{n} \in L \Leftrightarrow a^{4+n} \in L$ for all $n \geq 3$: $a^{2} \notin L$ but $a^{6} 6 L$, so $n_{0} \geq 3$.

But for $n \geqslant 3$, we have $a^{n} \in L$ iff $n \bmod 4=2$. Hence $n_{0}=3$. So min $\#$ states is $n_{0}+p=7$.
Alt! Use M, hill-Nerode (likely longer)
$(2021,7)$ In brief! you should be able to get a contradiction either way. Hence "John feeds those who don't feed themselves" gives a contradiction regarding John.
$(2021,8)$ Batiste laves Batiste, hence Batiste $\notin S$. But if $S^{\prime}=$ set of people whom Batiste loves, then S^{\prime} is everyone, hence Batiste $\in S^{\prime}$. Since Batiste $\notin S$ and Batiste $\in S^{\prime}$, $S \neq S^{\prime}$. Hence the two sets of humans are different.

- Midterm Practice 2023: Same solutions
(2023,1) Brief solutions, some explanations left out...

NoN-Acceptance is unrecognizable, since otherwise we could use a recognizer for NON-AKCEPTANCE to recognize NON-SELF-ACCEPTANCE, which gives a contradiction (see $(2023,2)$ below or class notes).

NON-PYTHON is decidable (see class discussion) ACCEPTANCE is recognizable (by a universal Python program), but undecidable, for otherwise $\sum^{*} \backslash($ ACCEPTANCE U NON-PUTHON $)$ $=$ NoN-Acceptance would be decidable,

In brief! one can reduce $A C C E P T A N C f$ to WALTING ar REJECTING, so one can similarly argue that the lattes two are undecidable (and both can be recognized using a universal TM).
NON-ACCEPTANCE can be reduced to LOOP,NG, hence the latter is unrecognizable.
$(2023,2)$ We took $S=\sum_{\text {ASCII }}^{k}$,
$f=$ Language Rec $B y$, a map
$f: \sum_{A S C I I}^{k} \rightarrow \operatorname{Power}\left(\sum_{A S C I I}^{k}\right)$.
Hence a language is recognizable of it is in the image of f. By Cantor's theorem $T=\left\{p \in \sum_{A s c I \imath}^{k} \mid p \notin f(p)\right\}$ is nd in the image, and hence T is not recognizable

2023:(3)-(5) In brief (you have to explain why)
(Ba) True: $\omega \in L_{1} \backslash L_{2} \Leftrightarrow$
$\omega \in L_{1}$ AND $\omega \notin L_{2}$. We can run a decider for L_{1}, and then are for L_{2} to test if $\omega \in L_{1}$ and if $\omega \notin L_{2}$ and accept of rejed accordingly.
(Bb) Let $L_{1}=L_{2}$ be an undecidable language,
e.g. ACCEPTANCE. Then $L_{1} \backslash L_{2}=\varnothing$,
which is decidable.
($3 d$) similarly as ($3 b$)
(Bc) False: take $L_{1}=\Sigma^{*}$,
$L_{2}=$ NON-PUTHON \cup ACCEPTANCE. $E+c$.
("Etc." means you have to explain this)
(Ha): True. Etc.
(4b)! False: e.g. take ACCEPTANCE ant its complement. Etc.
(lc): True. Etc.
(4d): False: This seems more difficult. Let

$$
\begin{aligned}
& L_{1}=\operatorname{NON}-A C C E P \text { TACE } \cup\left\{\langle p, i\rangle \left\lvert\, \begin{array}{l}
i \text { begins with } \\
\text { "a" }
\end{array}\right.\right\} \\
& L_{2}=\text { NON-ACCEPIANCE } \cup\left\{\langle p, i\rangle \left\lvert\, \begin{array}{l}
i \text { does not begin } \\
\text { with "a"" }
\end{array}\right.\right\}
\end{aligned}
$$

Then both L_{1}, L_{2} are unrecognizable, since NON-AcCEPTANCE can be reduced to L_{1}, L_{2} (why?), but $L_{1} \cup L_{2}=\sum_{\text {ASCII }}^{*}$ NON-PUTNON $(2023,5)$ Etc.

