csc $421 / 501 \quad$ Now 30, 2021
Schedule:
Today: Jerry: CEG's

- Compare [Sip], CL 2

Thursday! Mia \& Sophie! QC (not covered at all in [Sip])

Tuesday $(\operatorname{Dec} 7)$!
Zack: TRS (term rewriting systems)

Grigorii: Kolmogorv Complexity
(compare Section 6.4 [Sip])

Today! Jerry starts after break
Dec 2 \& 7 talks!

- Start at beginning of class
- Time leftover!" office hours ": questions an homeward + exam practice

Dec 22: Final Exam
$=$
Today! Proof of Cook-Levin theorem, $[5 i p] C h 7$ \&
how "to solve P vs NP"
$=$
There will be a $H W 10$
(A) will be handed in, OR
(B) Gaud will be handed in, is yew are recsondably certain that de it sometime before final exam (regardless of midterm score)

B carries (not wencnimarly)
(Code-Levin Rosen n:)

Last time!

$$
\left.\begin{array}{l}
\text { SAT: }=\{\langle f\rangle \\
\text { e.g, } \\
X_{1} A N D \rightarrow X_{1}
\end{array} \begin{array}{l}
f \text { is } \\
\text { sctisfiable }
\end{array}\right\}
$$

f is sctisfubble iff there is a truth assignmert to f,
$f=f\left(x_{1}, \ldots, x_{n}\right), \quad n$ Bodem
variables, sit.
for seme values $x_{i, \ldots,}^{*}, x_{h}^{*}$ eivler $T / E, f\left(x_{1}^{*},-, x_{n}^{*}\right)=T$
(f) ovor save chiphtat

$$
\begin{array}{r}
\sum=\{A N D, \text { or, } N \subset T,(,) \\
x, 0,-=, a\}
\end{array}
$$

[Sip] confers notation L
$a b \quad q_{3} b a$ $\prod_{\text {cell l cell z }} \prod_{\text {cell } 3} \bigcap_{\text {cell } 4}$ indicates time heal is an cell 3 anythy not in $\sum_{\text {confers }}=Q_{m} \cup \Gamma_{m}$
$Q_{m} \cup \Gamma_{m}$ is think of
$Q_{m} u \Gamma_{m}$ where Q_{m}, Γ_{m} are regarded as disjoint

$$
\left(a, b, q_{3}, b, c\right) \in \sum_{\text {comfy }}^{k}
$$

next ster, say

$$
\begin{aligned}
& \sum_{q_{a}} \sqrt[{\sqrt[6]{2}}]{a|b| \times|a| \cup \mid u=-} \\
& a a_{a} b \times a
\end{aligned}
$$

In one stop:
wheteré $a b 9_{3} b$ a whetorer

$$
G \downarrow
$$

$$
\downarrow 11
$$

whetary' a $\underbrace{9, b \times}$ a whateres
what chinges calli cell itl

cell i, time $t+1$

Entre IM amants to
celli
trme $<$
tel
$\operatorname{trans}\left(\begin{array}{lll}\text { cell } i-1 & \text { celli, cell } i+1 \\ \text { timet, timet timet }\end{array}\right)$
\uparrow
$\underset{m}{\operatorname{trons}:} \sum_{\text {confry, } m}^{3} \rightarrow \sum_{\text {con } 6,3, m}$
and $\sum_{\text {confy } 3 \text {, deperds on } M \text {, but }}$ is firite

Thm[Cock-Levin]: If $\quad S A T \leqslant P$ then $P=N p$, ie. if $L \in N P=\{$ verify in poly time $\}$ then $L \in P$, ie. there is a poly time $\left(\begin{array}{rl}\text { rasher than }\end{array}\left\{\begin{array}{l}\text { nor- } \alpha e t \text { ooh } \\ \text { the } \\ N P\end{array}\right)\right.$.
Proof!
What is NP:
$L \in N \rho$ means:
Step - $1: \quad \sigma_{1}|\ldots| \sigma_{n}|\cup| \cup-$

$$
w=\sigma_{1} \ldots \sigma_{n} \text { in pot, } \sigma_{i} \in \sum
$$

areckecll, guess, non-det, .. step O!
 after n^{k} steps, tope head car only see

$$
\text { So_ } \exists \mathrm{Tm}, M^{\prime} \text {, sit. }
$$

(1) $\omega \in L \Longleftrightarrow$ some $\left\{\begin{array}{l}\text { orath } \\ \text { guess } \\ \text { nor-dt }\end{array}\right\}$

$$
\text { wíll accept } w+\hat{\rho}_{\text {gusss }}
$$

(2) $\omega \notin L$ there's ne gues that has M^{\prime} accepty

$$
\sigma_{1} \ldots \sigma_{n} g_{1} \ldots g_{n^{k}-n}
$$

in time n^{k}

$$
\text { Poly Time }:=\bigcup_{k=1,2, \ldots} \operatorname{Tim} \in\left(n^{k}\right)
$$

Sc: in time n^{k}

you involve $\leqslant\left(n^{k}\right)\left(n^{k}\right)$

So computation is correct if...
inituzlly set up right step

step $2 \sim$ step 1	correctly
AND	
\vdots	
\vdots	
AND	

$$
\operatorname{step} n^{L} \cdots \operatorname{step} n^{2}-1 \text { AND }
$$

we fish in pace
sty 2 fron 1 is correet

AND

S- ma brouk

$$
10: 15-10: 20
$$

betor $\left.n^{k} \rightarrow p^{d}\right\rangle(n)$

