CPS $421 / 501$
Nor 2, 2621

- Study guide for Midterm:

Look at top of course webpage,
News section, Oct 29 entry.

- Midterm will 60 minutes. You will be seated in some order, likely alphabetical by last name as it appears on the Faculty Service Centre
- Please remain outside the classroom until you are asked to enter the classroom
- You will asked to enter the classroom at roughly 9:35 am. The exam begins at 9:40 am.
- You should be able to do all the homework problems.

Today!

- Turing Machines \& their
variants

Goal!
(1) Convince you that $P=p d y$ time ca l-tope TM
(reasenchle notion that agrees with poly time CPSC 320 , poly the ir C, Javascript. ©.)
$2 f$ Convince you then you <en build - universal TM
(1) Multi-tipe machines: seens "mare realistic" and helpful in gaals (1) \& (2) $=$

Last time

$$
\begin{aligned}
& \text { PALINDRGME }\{a, b\} \\
& =\left\{w \in\{a, b\}^{*} \mid w=w^{\text {rev }}\right\}
\end{aligned}
$$

cortoins $a b b a, ~ a b a, ~ a a b a ̀ a$ not to $a b b a a, a b, b a, \ldots$

Seemed excessnuly $n^{\text {unrealistic }}$ to recognize
decide (decide $=$ recognize t alucys hel on c 1-tape, classical TM
input

$$
\begin{aligned}
& a|b| b|a| b \\
& \hline
\end{aligned}
$$

miticlly

$$
q_{0} \begin{array}{|l|l|l|l|l|l|l|l}
\hline a & b & b & a & b & \ldots & a & b \\
\hline
\end{array}
$$

Algorithm: remember cell $\# 1$,
but we move to the end of tape
 then ge beck

Time of oor clgarithm:

$$
\begin{aligned}
& C(n+(n-2)+(n-4)+-1) \\
& =O\left(n^{2}\right)
\end{aligned}
$$

may be

$$
(n+(n-1)+(n-2)-\cdots)+O(1) \cdot n
$$

ma ${ }^{\text {be }}$

$$
\frac{n(n+1)}{2}+O(n)
$$

raghly

$$
\frac{1}{2} n^{2}+O(n)
$$

cald we improce this running time?

We cor improve this:
$a / b \mid a-\square$
$\underbrace{}_{\text {read }} 1^{\text {st }} \& 2^{n}$)
cell i

moke "'program," Q, twice as large, you can speed up by
to roughly $\frac{1}{4} n^{2}+O(n)$
Reclly there is an algrorithon thet cochieves, for any $c>0$

$$
c n^{2}+\underbrace{O(n)}_{\text {maghe deperde on } c}
$$

Fixed! Linguace F PALINDROME,

$$
\Sigma=\{a, b\}
$$

Q, Γ, stete.set Q work tape alphubut Γ

The: Any A-tupe algorithm to decide (recognize) PALINDROMe $_{\Sigma}, \quad|\Sigma| \geqslant 2$ take time, for some $c>0$

$$
\geqslant c n^{2}
$$

for n sufficiently large
(Not easy, uses
"fooling algorithm"
irput w, (w) $\mathrm{i}=\mathrm{n}$
 Sumps bauk and

2-tope TM:

U U い

Algorithm!

$$
\begin{aligned}
& \delta: Q \times \Gamma^{2} \rightarrow Q \times \Gamma^{2} \times\{L, R, S\}^{2} \\
& T \\
& 2 \text { tepe } \\
& S=\operatorname{stan} \\
& \text { Lecd } \\
& \text { cells to } \\
& \text { read } \\
& \text { Clam: PALINDRanf has } \\
& \begin{array}{l}
\text { linew time cly an } 2-t_{\text {ppe }} \\
\text { machine }
\end{array}
\end{aligned}
$$

Aly to be degcrithed ir mere detail next Tvesday $10!09-10: 14$ breale

Questins relcte) to midterm
Aval 1,2 cancern
C_{k} for $k=4$

$$
k=5
$$

Homenork solutions

Min \# stites

$$
\begin{aligned}
& a^{20}, a^{50} \in L \\
& a^{51}, a^{52} \notin L
\end{aligned}
$$

Here
Leald be

$$
\left\{\begin{array}{c|c}
a^{n} & n \bmod 3 \\
=20 \bmod 3 \\
=2
\end{array}\right\}
$$

L is infinite! $\sum=\{a\}$
DEA:

$L \operatorname{infinite} \Leftrightarrow$
periotic part Las
 $\int_{\text {converses }} \geq 1$ acceptry state
L finite \Leftrightarrow every state of period
 port is not accept ry

$$
\begin{aligned}
& a^{n} \in L, \begin{array}{l}
a^{n} \text { is teluan } \\
\text { to an acceptry } \\
\text { state of } \\
\text { any } D \in A \\
\text { recognisy } L
\end{array} \\
& a^{n-s} \rightarrow a^{n+t} \notin L
\end{aligned}
$$

So
Case l a^{n-5}, a^{n} lie or non-por pot
$\cos { }^{2}$
a^{r} lies ar per part
a^{n-s} does nut
Case $3 a^{r-5}, a^{n}$ both lie off poriodve punt

Yon are allowed
l double-sided page af notes,

$$
8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}
$$

(will also help you to study)

