CSC $421 / 501$ Oct 28, 2021

- Problem G.l.6(a) requires $n \geq n_{0}$ (explained on solutions to Womewol S 5) \leftarrow thanks to
- Homework 6 solutions and some midterm practice to appear tomorrow (friday). Brief solutions to some will appear Monday.
- Last $1 / 2$ of Tuesday's class

I'll take questions on
midterm practice.

- Problem 1 an Individual Homework 5 will not be collected; a partial solution is given. [You will want to be sure to know how to do these types of problems when studying for the midterm and/or final.]

Lest time :
Introduced TM's (Turing machines)。
Gets: (1) $P=$ polynomial time on a TM (Turing machine) is a reasonable model fo pay time es in CPSC 320 , etc.
(2) One can build a universal Turing machine Stat small ad build up
$\left[S_{i p}\right]: T M=D f A$ with some eater paws:

So, still
write this
symbol just

$$
Q=\text { set of states }
$$

where yah
$\sum=$ alphatex of tout
the tape head moves

$$
\Gamma=\left\{u\{\Delta\} \cup\left\{\begin{array}{l}
\text { finite H } \\
\text { of symbils }
\end{array}\right\}\right.
$$

tape
symul
apphebet
blark
symbel,
nat purt
of \sum

e.y,

$$
\begin{aligned}
& \sum=\{a, b\} \\
& \Gamma=\{a, b, \sqcup, \dot{\vartheta}\}
\end{aligned}
$$

at each stcte:

we have shertats...

Lcost tume: $\quad \sum=\{a, b\}$

$$
C_{2}=\left\{\begin{array}{l|l}
\left.\left.w \in \sum^{*} \left\lvert\, \begin{array}{ccc}
2^{n \alpha} & \text { to last } \\
\text { symbol of } & \omega \\
\text { is an } \text { is }^{\prime}
\end{array}\right.\right\}, ~\right\}
\end{array}\right.
$$

High-level descriptimen of TM!
(1) Mave te the right wAtrl we see $a \quad \cup$, then
(2) Mere twe stepr to the left, ant cocept/reject cocororng to whether or not we see an "a"
"Implereatatirn - Level"
Stout in qc (why not?)
Keep moving to R when we see an a, b
(keeping in mind) that we need to be careful when input, $w+\sum^{*}$ is of length 0 o- 1)

Once we've seen a U, move to $q_{\substack{\text { we've } \\ \text { seen a }}}$ then move to
blank
the left 2 step, are shew state per
step, and then move to qacc or $q_{\text {raj }}$ accordingly

Formal desciption: list Q, \sum, ∇, $q_{0}, q_{\text {ace }}, q_{r e j}$
specify F by - diagram

- table
- write cut each value
(with some short Lind)
Remark: After chs: [sip] omits symbd if unchanged

Lest tive A shartind $a, b \mapsto a$

now
On impot $\omega=\varepsilon$: trpe $\sqrt{\text { mitul }}$ lengtl 0
(1) Cald replase qo with

We a ob tupe $a \cup U \ldots$ buひ...
(2) Coull cod to $\Gamma:(\mathrm{ini})$

Nou: $\left\{O^{n} \mid n\right\}$ or PALINDReme
Break 10:2\$-10:28
[sip] seys if yen meve L on cell ${ }^{*} 1$, you just sto

Now

$$
\left\{0^{n} 1^{n}\right\}
$$

or
PALINDROME 0,1 (2)

$$
\begin{aligned}
& =\left\{\omega \in\{c, 1\}^{*} \mid \omega=\omega^{\text {rev }}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Gor}(3) \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \sum=\{c, b\} \\
& \text { PALINDRON }=\left\{\omega \in \Sigma^{k} \mid\right. \\
& w^{\text {rev }}=\omega \mid \\
& =\left\{\begin{array}{l}
\sigma_{1} \sigma_{2} \ldots \sigma_{n} \mid \\
a_{i}-\in\{a, b\}
\end{array}\right\} \\
& \begin{array}{l}
n=\text { lengh } \\
\text { of imgu }
\end{array}
\end{aligned}
$$

$a \sim b$
branch to two branches, one: Esau ma

$$
q_{\text {sew }} \subset b
$$

$\max R$ until see U, move L, compare whet we see

$$
\left.\begin{array}{c}
\Gamma=\left\{a, b, w, a^{\prime}, b^{\prime}\right. \\
T /
\end{array}\right\}
$$

$q \quad \nabla$
$q 0$

$$
\begin{array}{cc}
a b b c \ldots & \text { initial } \\
\downarrow= & \downarrow \\
a^{\prime} b b a- & \text { after l step }
\end{array}
$$

$q_{\text {just sem }}$
same
San
 $L \operatorname{man} L$

say:

$$
a^{\prime} b b a b b=-b b a \stackrel{\nabla}{\square}
$$

$$
\text { have } \text { list }^{\text {st }} \text { symbol }=\left(\overline{a_{s i}} \text { symbl }\right)
$$

write

$$
\curvearrowleft \curvearrowleft \curvearrowleft
$$

move L

$$
a^{\prime} b^{b} b a
$$

L
This slide shown in parallel with last. Also, $[s, p]$ writes $a \longrightarrow b, l$ insted of $a \longmapsto b, L$

