CSC $421 / 501$ Oct 19,2021 instead of
Today: C_{k}, regex, Myhill-Werode三: How many natural languages (egg. English, French, Twe, Farsi,...) are first written, then spoken? [via Prof. Rose-Marie Déchaine, UBC Linguistics, at TAG IS, $1994]$
Answer as per class cansesus:

- Mast langunges first spoken, then halter
- Maybe some "created"
- Maybe simultaneously, in same Sense

Me (1994): Esperanto???

$$
\text { (IAL }=a \cup x(a n g)
$$

Q: How many formal languages
(eeg. $\left.\left\{a^{3}, a^{4}\right\}^{*}, \operatorname{DIV}-B_{i}-3, C_{k}\right)$
does one first describe by
a DFA, then by a regex?
regex = regular expression, ecg.

$$
\begin{aligned}
& C_{5}=\left\{w \in\{a, b\}^{*} \left\lvert\, \begin{array}{l}
\left.5^{\text {th }} \text { last symbd }\right\} \\
\text { is an "an" }
\end{array}\right.\right\} \\
& =\{a, b\}^{*} \circ\{a\} \circ\{a, b\}^{4}
\end{aligned}
$$

regex $\sum^{*} a \sum^{4}$
Answer.

In [sip], $\$ 1.3$ i regex (regular expression):
ϕ emptyicl
\sum empty string
and symbol/letto from $\sum=\begin{gathered}\text { some } \\ \text { finch }\end{gathered}$ alphabet
then operatarens!
c, *, U
where is R_{1}, R_{2} are reg exp!

$$
\begin{aligned}
& \left(R_{1}\right)\left(R_{2}\right),\left(R_{1}\right)^{*},\left(R_{1}\right) \cup\left(R_{2}\right) \\
= & \text { Note } \left.\left[s_{n}\right], 1.3 \text { we do not }\right)\left.\right|_{9} 11 \\
& \text { allow negation } 7
\end{aligned}
$$

Thai Amy regular expressions describes a reguto language

This year
this your we dent dover

Sipper 1.3: floating point
Say $\mathbb{N}=\{1,2,3,4, \ldots, 9,10,11, \ldots\}$

$$
\begin{aligned}
& \text { eig, }[0.19]^{+} \\
& (001 v \ldots 19) \circ(001 \ldots 09)^{k} \\
& \sum=\left\{c_{1}, c\right\} \\
& \sum \sum^{k}=\{0,1, \ldots, 9,00,01, \ldots\}
\end{aligned}
$$

don't have this

$$
D \mid V-B Y-3=\{3,6,9,12,15,18,21, \ldots\}
$$

111,111	dve by	
11,111	is not	bese 10
1,111	is not	(nd bese 2)
1111	is	

A REGULAR EXPRESSION FOR DIV-BY-3

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2019. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Disclaimer: The material may sketchy and/or contain errors, which I will elaborate upon and/or correct in class. For those not in CPSC 421/501: use this material at your own risk...

In class we derived a regular expression for DIV-BY-3, defined as

$$
L=\{0,3,6,9,12,15, \ldots\}
$$

(which is the language over $\Sigma=\{0,1, \ldots, 9\}$, and we do not allow leading zeros in elements of L and we do not consider the empty string to be part of L.

In class of October 2, 2019 (see class notes), began with a five state NFA, added an ending state, and then eliminated the intermediate states. The expression we got was

$$
0 \cup T_{0} T_{1}^{*},
$$

where

$$
T_{0}=S_{2} \cup S_{3} S_{4}^{*} S_{5}, \quad T_{1}=S_{0} \cup S_{1} S_{4}^{*} S_{5}
$$

where

$$
\begin{gathered}
S_{0}=R_{0} \cup R_{2} R_{0}^{*} R_{1}, \quad S_{1}=S_{3}=R_{1} \cup R_{2} R_{0}^{*} R_{2}, \quad S_{2}=R_{0}^{\prime} \cup R_{2} R_{0}^{*} R_{1}, \\
S_{4}=R_{0} \cup R_{1} R_{0}^{*} R_{2}, \quad S_{5}=R_{2} \cup R_{1} R_{0}^{*} R_{1}
\end{gathered}
$$

where

$$
R_{0}^{\prime}=3 \cup 6 \cup 9, \quad R_{0}=0 \cup 3 \cup 6 \cup 9, \quad R_{1}=1 \cup 4 \cup 7, \quad R_{2}=2 \cup 5 \cup 8 .
$$

In the above expressions we have omitted some necessary parentheses.
Repeated substitution yields the following regualar expression (after adding needed parentheses):
$0 \cup\left(\left((3 \cup 6 \cup 9) \cup(2 \cup 5 \cup 8)(0 \cup 3 \cup 6 \cup 9)^{*}(1 \cup 4 \cup 7)\right) \cup((0 \cup 3 \cup 6 \cup 9) \cup\right.$ $\left.(2 \cup 5 \cup 8)(0 \cup 3 \cup 6 \cup 9)^{*}(2 \cup 5 \cup 8)\right)\left((0 \cup 3 \cup 6 \cup 9) \cup(1 \cup 4 \cup 7)(0 \cup 3 \cup 6 \cup 9)^{*}(2 \cup 5 \cup 8)\right)^{*}($ $\left.\left.(2 \cup 5 \cup 8) \cup(1 \cup 4 \cup 7)(0 \cup 3 \cup 6 \cup 9)^{*}(1 \cup 4 \cup 7)\right)\right)(((0 \cup 3 \cup 6 \cup 9) \cup(2 \cup 5 \cup 8)(0 \cup 3 \cup 6 \cup$ $\left.9)^{*}(1 \cup 4 \cup 7)\right) \cup\left((0 \cup 3 \cup 6 \cup 9) \cup(2 \cup 5 \cup 8)(0 \cup 3 \cup 6 \cup 9)^{*}(2 \cup 5 \cup 8)\right)((0 \cup 3 \cup 6 \cup 9) \cup$ $\left.\left.(1 \cup 4 \cup 7)(0 \cup 3 \cup 6 \cup 9)^{*}(2 \cup 5 \cup 8)\right)^{*}\left((2 \cup 5 \cup 8) \cup(1 \cup 4 \cup 7)(0 \cup 3 \cup 6 \cup 9)^{*}(1 \cup 4 \cup 7)\right)\right)^{*}$

Research supported in part by an NSERC grant.
1

This is theoretical

Thm: Any reguls expressian describes a regelor Imaguaye:

Pf
NFA

$$
\begin{aligned}
& \phi \quad \rightarrow \quad \rightarrow 0 \\
& \varepsilon \quad \rightarrow \quad \rightarrow 0
\end{aligned}
$$

$$
a \leadsto \rightarrow 0 \stackrel{a}{\longrightarrow}
$$

$$
\begin{array}{ll}
R_{1} \circ R_{2} & \S 1.2 \\
R_{1}^{*} & \S 1.2 \\
R_{1} \cup R_{2} & \S 1.2
\end{array}
$$

i.e.

$$
\begin{aligned}
& n_{1}, n_{2} \text { build } N \in A I_{5} \\
& m_{1}, m_{2}, \text { recogn } n_{a} L_{1}
\end{aligned}
$$

then use § 1.2 Thm
L_{1}^{*} NFA built from m, NFA
smiberly

$$
\begin{array}{llll}
L_{1} \cup L_{2} & \text { NFA from } & m_{1}, m_{2} \\
L_{1} o L_{2} & \cdots & \cdots & m_{1}, m_{2}
\end{array}
$$

breck $10: 13-10!18$
Thmi If L is reguls, then so is

$$
\left.\begin{array}{l}
L^{\text {rev }}=\left\{\sigma_{n} \sigma_{n-1} \ldots \sigma_{1} \mid\right. \\
\sigma_{1, \ldots,} \sigma_{n} \in \sum \text { and } \\
\sigma_{1} \sigma_{2} \ldots \sigma_{n} \in L
\end{array}\right\}
$$

"revere languye"

$$
\begin{aligned}
& \text { Eig. } \quad \sum=\{a, b\} \\
& C_{3}=\Sigma^{*} a \Sigma^{2} \\
& C_{3}^{r e v}=\sum^{2} a \Sigma^{*} \\
& \text { NEA } \\
& \text { haw } 10 \text { theng } \\
& \left.C_{10}=\Sigma^{*} a \Sigma^{9}\right\} 2^{10}=1024
\end{aligned}
$$

MyhilloNervor Thy:
Idea! Soy tran have DEA
for L, say $w_{1}, w_{2} \in \sum^{\Varangle}$

$\omega_{\text {T }}$ takes you to $q \in Q$
ω_{2} " " " $q \in Q$
Then if $u \in \Sigma^{t}$
$w_{1} u$ is accepted, so is $w_{2} h$
$w_{1} h$ is reject.), ". " $w_{2} h$

For any L (reguter or not) aver same alphabet, \sum, any $\omega \in \sum^{K}$

Accoptry futures of w, acceptry means w.r.t. L

$$
\operatorname{Acrfut}_{L}(w)=\left\{u \in \Sigma^{\star} \mid w u \in L\right\}
$$

Then:
(1) If w_{1}, w_{2} are brought to the same state of a IF A recognizes L, then $\operatorname{Accfut}_{L}\left(\omega_{1}\right)=\operatorname{Accfut}\left(\omega_{2}\right)$
(2) If the number of different sets Accfut (ω) as w varies over $\omega \in \sum^{*}$ is a finite number, m, then there is a DE A recognizing L that has m states.

But if this number is not finite, when L is not regular.

Exemple:

$$
C_{3} \ldots
$$

Lets stert $\mathcal{E}=\{c\}$
Let

$$
\left.\begin{array}{r}
\sum=\{a\}, \quad L=\left\{a^{3}, a^{6}, a^{a}, \ldots\right\} \\
=\left\{a^{n} \left\lvert\, \begin{array}{c}
n \text { is } \geq\} \\
n \text { is nd } \sigma,
\end{array}\right.\right. \\
\text { avt } n \text { is } \\
\text { driside } b\}^{3}
\end{array}\right\}
$$

$$
\begin{aligned}
& L=\left\{a^{3}, a^{6}, a^{9}, \ldots\right\} \\
& \text { Accfut }_{L}(\varepsilon)=L=\left\{a^{3}, a^{6}, a^{9}, \ldots\right\} \\
& \text { Accfut }_{L}(a)= \\
& \left\{a u \mid u \in\{a\}^{*} \text { s.t. } a u \in L\right\} \\
& =\left\{a^{2}, a^{5}, a^{8}, \ldots\right\} \\
& \text { Accfut }_{L}(a a)=\left\{a^{1}, a^{4}, a^{7}, \ldots\right\}
\end{aligned}
$$

Surmery $L=\left\{a^{3}, a^{6}, a^{a}, \ldots\right\}$

$$
\begin{aligned}
& \operatorname{Accfut}_{L}(\varepsilon)=\left\{a^{3}, a^{6}, a^{9}, a^{12}, \ldots\right\} \\
& \operatorname{Accfut}_{L}(a)=\left\{\left(a^{2}, a^{5}, a^{8}, \ldots\right\}\right. \\
& \operatorname{Accrat}_{L}\left(a^{2}\right)=\left\{a^{1}, a^{4}, a^{7}, \ldots\right\} \\
& \operatorname{Accfut}_{L}\left(a^{3}\right)=\left\{a^{6}=\varepsilon, a^{3}, a^{6}, \ldots\right\}
\end{aligned}
$$

N.B, $\operatorname{AccFob}_{L}(\varepsilon) \neq \operatorname{Accrot}_{L}\left(a^{3}\right)$

Bexyad This

$$
\operatorname{AccEt}\left(a^{4}\right)=\operatorname{Accfat}(a)=\operatorname{Acctut}\left(a^{7}\right)
$$

ets.

Acceptry ficater $=f$

