CSC $421 / 501$ Od t 12
More surprises ruined ... in Ch:
Thy! If L_{1}, L_{2} are regular languages over \sum, then so are:

(4) $\left.L_{1} \circ L_{2}, L_{1}^{*}\right\} \underset{\substack{\text { Crit, dore with } \\ \operatorname{NFA} \\ \$ 1,2}}{\text { (5) }}$
(5) Lev \}"revere linguge" $\$ 1.3$ (regex)

Sn? Ohm! Any NFA has a correspandry
"efficient" algorithm and a DFA

The: Any regex (regular expression)
Sis has a corresponding DFA or NFA [and vice versa]

The: Amy DFA recognizing a language L has at least

$$
\left|\left\{{\underset{\sim}{A_{u t}}}(w) \mid \omega \in \Sigma^{*}\right\}\right|
$$

states, and conversely
use this to show:

- same languages non-regulor
- min \# states for reghe long.

M, hill-Nerode Theorem

My,hill-Nerode Theerem also in 2 exercises of [Stip]

What is on NfA, or Nou-deterministic f.A.? e.g.

$$
L=\left\{a^{5}, a^{8}\right\}
$$

DFA:

$$
\begin{aligned}
& \rightarrow 0 \xrightarrow{a} \xrightarrow{a} \xrightarrow{a} \stackrel{a}{\rightarrow} \stackrel{a}{\rightarrow}()_{\vec{a}}^{b} \text { a } \\
& G O \leftarrow G \leftarrow_{a}
\end{aligned}
$$

Claim: L^{*} is also regular.

$$
\begin{aligned}
& L^{*}=\text { complicated... } \\
& \binom{0}{m_{5}}\left\{a^{6}, c^{5}, a^{10}, a^{15}, \ldots .,\right. \\
& \left(\begin{array}{c}
3 \\
m \times 0 \\
5
\end{array}\right) a^{8}, a^{13}, a^{18}, a^{23}, \ldots \\
& \left({ }^{\text {mas }} \text {) }\right) a^{16}, a^{21}, a^{26}, \ldots \\
& \binom{4, j)}{\operatorname{maj})} a^{24}, a^{2 a}, a^{34}, a^{3 a}, \ldots \\
& \left(2_{m 0}, a^{32}, a^{37}, \ldots\right\} \\
& =\{a^{c}, \ldots \lambda_{\text {for which min } n_{0} \text { is }} \quad \underbrace{a^{38} a^{39}, a^{40}, a^{41}, \ldots}_{\text {stahirizizes }}
\end{aligned}
$$

$$
a^{n} \& L=\left\{a^{5}, a^{8}\right\}^{*} \text { fo all } n \geq n_{0} \text { ? }
$$

$$
L=\left\{a^{5}, a^{8}\right\}
$$

DFA:

$$
\begin{aligned}
& \begin{aligned}
\rightarrow O \stackrel{a}{\rightarrow} & \stackrel{a}{\rightarrow} \\
& \rightarrow \underset{a}{a} O \stackrel{a}{a}(O) \stackrel{a}{\leftarrow}{ }_{a}, a
\end{aligned} \\
& L^{*}=\left\{a^{5}, a^{8}\right\}^{*} \\
& D F A: \\
& \rightarrow O^{\dagger} \stackrel{a}{a} a \rightarrow \xrightarrow{a}(a) \xrightarrow{a} \\
& \varepsilon \text { a } \cos _{a} \Leftrightarrow \stackrel{\leftarrow_{a}}{ }
\end{aligned}
$$

NFA is simple to describe with a diagram:

Di A but also
(1) we have an "E jump"
(2) we allow mare than one (or
zero) weybsto leave a state

$$
[=\{a, b, c\}
$$

Way to think of it!

15
that has no wa
abb... to continue
stirs: $\begin{gathered}\binom{\text { initio }}{\text { spate }} \stackrel{\text { read }}{a}\left\{q_{1}, q_{2}\right\} \xrightarrow{\text { read }} \text { b }\end{gathered}$

Formel defmition in $\S 1,2$:

$$
\begin{aligned}
& D F A=\left(Q, \Sigma, \delta, q_{0}, F\right) \\
& \text { F: } Q \times \Sigma \rightarrow Q \\
& \text { NFA } \\
& \text { DFA }=\left(Q, \varepsilon, \delta, q_{0}, F\right) \\
& \delta: Q \times \sum_{\varepsilon} \rightarrow \operatorname{Power}(Q) \\
& \sum_{\varepsilon}=\sum u\{\varepsilon\} \prod_{\substack{\text { chsc } \\
h_{\text {cove }} \varepsilon j \operatorname{momp}}}
\end{aligned}
$$

$\operatorname{POWER}(Q)=$
$\{$ all subsets of $Q\}$
Thu: for each NFA with m states, there is a $D F A$ with -at most 2^{m} states the recognizes the same languages.
Let $\operatorname{NFA}=\left(Q, \varepsilon, \delta, q_{0}, F\right)$.
Let $D F A=(? ?, \Sigma$,
5 minote brak $10!12 \rightarrow 10!7$ 6.1 .5 conftains

fix after class II

The: for each NFA with m states, there is a $D f A$ with -at most 2^{m} states that recognizes the same languages.
Let $\operatorname{NFA}=\left(\mathbb{Q}, \varepsilon, \underline{\Phi}, q_{0}, F\right)$.
Let $D F A=\left(\operatorname{Power}(Q), \Sigma, \tilde{\delta},\left\{q_{0}\right\}, \tilde{F}\right)$

$$
\begin{aligned}
& \tilde{\delta}: \operatorname{Power}(Q) \times \sum \longrightarrow \operatorname{Power}(Q) \\
& \tilde{\delta}(S, \sigma)=\left\{\begin{array}{r}
\text { sit. } q=\delta\left(q^{\prime}, \sigma\right) \\
\text { messy } \ldots
\end{array}\right.
\end{aligned}
$$

$S \in Q$
$S \in \operatorname{Powr}(Q)$ means $S \subset Q$

$$
\begin{aligned}
& \hat{F} \subset \quad \rho o w \in R(Q) \\
& \hat{F}=\{S \subset Q \text { sit, }
\end{aligned}
$$

\int contuins in elemant of f,
SnF is nen-empty, there is a $q \in Q$ s.t. $q \in S$ and $q \in F$

Question: Nate (homeurt)
that a DEA with m states can have roughly $2^{m} / 2$ States (certinly $\Omega\left(2^{m}\right)$,

$$
\left.\begin{array}{rl}
& L\left\{\left\{\in\{a, b\}^{*}\right.\right.
\end{array} \begin{array}{c}
\text { the } m \text { th } \\
\text { last symbol } \\
\text { of } w \text { is }
\end{array}\right\}
$$

M is an $N \in A$ that recoghizes

$$
\left.\left.\begin{array}{c}
L=\left\{\begin{array}{l|l}
\omega \in\{a, b\}^{*} \left\lvert\, \begin{array}{c}
w \\
\text { ends } \\
\text { in } \\
a
\end{array}\left\{\begin{array}{l}
a \\
b
\end{array}\right\}\{b\right. \\
b
\end{array}\right\}
\end{array}\right\}\right\}
$$

- of (EN) is an a.

Similuty for

$$
\rightarrow Q^{Q_{a, b}^{a}} \xrightarrow[a, b]{\longrightarrow} \overrightarrow{a, b} \underset{c, b}{ } \text { (O) }
$$

$4^{\text {th }}$ to kot symbal of w is a

Rem!
In $\omega \in \sum^{*}, \quad \sum$ clohebet

$$
\omega=\sigma_{1} \ldots \sigma_{n} \quad \sigma_{i} \in \sum
$$

then

$$
\begin{aligned}
& \omega^{\text {rev }}=\sigma_{n} \sigma_{n-1} \ldots \sigma_{1} \\
& L=\left\{\omega \in\{a, b\}^{*} \left\lvert\, \begin{array}{l}
\text { the } 4^{\text {th }} \text { to } \\
\text { lost symbol } \\
\text { of } a \text { is } a
\end{array}\right.\right\} \\
& L^{\text {rev }}=\left\{\omega \in\{a, b\}^{* \mid} \left\lvert\, \begin{array}{l}
4^{\text {th }} \text { symbol } \\
(\text { rem beginniy }) \\
\text { is an an a }
\end{array}\right.\right\}
\end{aligned}
$$

Is there a shat DFA for $L^{\text {rev }}=$?
$\rightarrow O \xrightarrow{a b} O \stackrel{a b}{\rightarrow} O \stackrel{a b}{\longrightarrow} 0$

Reg Ex for L !

$$
\ldots S 1.3 \ldots
$$

