$\operatorname{CPSC} 421 / 501$, Oct 7, 2021
"Now we will use extensionuby-zero, and you will sneer at it."
"Last class I mentioned
extension-by-zero, and you sneered at it.

Running joke of Prof. Raoul Bott

$$
(1923-2005)
$$

Is there a sub-linear time algorithm to factor an integer?

What is a "sub-linear time algorithm"?

Input!

$$
7543127189
$$

just reascrable to faster? look at each digit
lot poss: you don't actually have to look at all input digits!

$$
\text { egg. },\left\{S \in \Sigma^{*}| | S \mid \geq 2\right\}
$$

$C L=\sum^{k}$ or $L=\varnothing$
DFA with ane state

$$
\Sigma^{t} \rightarrow\left(O_{\Sigma}\right.
$$

ablate
Say DFA is a partial past der:

Could yer factor a number $\mathbb{N}=\{1,2,3, \ldots\}$ in sul-linere time, or solve problem where you have to examine all the symbds/letters in the input strings/words???

In Ch. 7, we talk about
(log-space reductions
poly-time "
$=$
Yon could take abut trees
representing computation

Cald you fector ch integar in sub-linear tine?

What if: 12 buselo
yah wrote

Unary! always "blasts" the input size...

De not sneer at

$$
\begin{aligned}
& \sum=\{a\} \\
& a \text { single - }\binom{\text { letter }}{\text { symbol }} \text { alphabet }
\end{aligned}
$$

Well spent mare time this year on

$$
\Sigma=\{a\} \text { single letter }
$$

CPSC $421 / 501$ Oct 7

- My office hoars now 3:45-5:15pm on Tuesday.
- $\left\{\begin{array}{l}\text { New } \\ \text { New }\end{array}\right\}$ to 2021 :

Mare discussion of DFA's and regular languages over $\Sigma=\{a\}$.
$\binom{$ Don't sneer at a }{ one-lettes alphabet }
(Wait until we make use of unary notation to give a short proof that
NP - SNEAKY

$$
\left\{\begin{array}{c|c}
= & M \text { is a hon-det TM } \\
\langle M, w, \mid t\rangle & \begin{array}{l}
\text { that accepts } w \\
\text { within time t }
\end{array}
\end{array}\right\}
$$

is NP-complete
t expressed in UINARY, ie. aver a one-letter alphabet. Does not
work in binary, base 10, e^{t}.

Review
DFA an $\sum=\{a\}$

Today: mortly tallk cbat

$$
\left\{a^{3}, a^{5}\right\}^{k} \text { set }
$$ sould mary mare stctes.

Thm If L is regular, then so is L^{*}.

The most convenount to prove this is non-deterministic $F A$, NFA's (Section 1.2).

Last time:

$$
\begin{aligned}
& D \mid V-B Y-3, \text { aver } \\
& \Sigma=\{0,1, \ldots, 9\},
\end{aligned}
$$

You could say DIV-BY-3

$$
\begin{aligned}
& \text { dent } \\
& \text { have }\{3,6,9,12,15,18, \ldots\} \\
&\{0,3,6,9,12, \ldots\} \\
&\{(\varepsilon, 0,3,6,9, \ldots\} \\
&\{(\varepsilon, 0,3,6,9,03,06,09,12, \ldots\}
\end{aligned}
$$

Simplest machine

5 mim brak, $10: 12-10: 17$,
$\operatorname{Crap}_{p} H()^{\#} 4$!
6.1.1-6.1.5, EXERCISE
section in my hill-Nerode
hundout

Which is simpler?
Rachth

$$
\left\{\varepsilon, a^{3}, a^{6}, a^{9}, \ldots\right\}
$$

andegue
of
or

$$
\left\{a^{3}, a^{6}, a^{a}, \ldots\right\}
$$

DN.BT-3 quest.m

Question:
$L=\left\{a^{a}, a^{13}\right\}$ looks easy to understand...

what about recognizing

$$
L^{k}=\left\{a^{a}, a^{13}\right\}^{*} \text { as } a
$$

- $\min \left(a^{9}\right) \operatorname{mos}\left(a^{13}\right) a_{a}^{a}$

$$
\begin{gathered}
a^{31} \in L ? \\
\notin L ? \\
a^{95} \in L ? \\
a^{95} \notin L ?
\end{gathered}
$$

$L^{*}=\{$ werds thet are $\left.\begin{array}{cc}\text { concatenctions of } \\ \left(a^{a}\right)^{\prime} s & \left(a^{13}\right)^{\prime} s\end{array}\right\}=? 77$

Scy thet
(1) we can junp to mare then ore place on a givan symbol, or to

(2) also we have an $\varepsilon-j u m p$

measuring you reading anything

Mare generdly:
if L hes DFA?

Esample 2! Vendry Machine Input carns to $0.10=a$ (xys)

L
$L^{k}=\{$ wards in $\{a, b\}$ above
where machine is not asking for mere money, i.e. showing 0 cents $\}$

