Csc $421 / 501$, Sept 28,2021
September 30?
Nations Day for Truth and Reconcilliation. (concerning Canada's residential school system and related abuses) also known as Orange Shirt Day

UBC STEM (Science, (ading, and Engineering) invites you to their:

Intergenerational March to commemorate Grange Shirt Day, Sept 30, $11: 45 \mathrm{am}-2 \mathrm{pm}$

- It is not easy far survivors of the Indian Residential School System to talk about their past trauma.
- Survivors and their families tire from giving repeated explanations
- Children are not responsible for the mistakes of their parents, but have the obligation to learn about these mistakes
- One of my favourite suggestions "Learn for yourself"

I have learned.
We have learned.
We are learned.

Start Chapter 1:
1.1 DFA's \& Regular Languages
1.2 Regular Languages are closed under o,* erg. $\left\{a^{4}, a^{5}\right\}^{x}$ is regluar
How do we know? (NFA's)

KY/ Sk /i, but handout of Myhill-Nrode the

Def: A DFA, lie a (deterministic) finite automaton, (or finite automaton), is c

5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$
sit. Q, \sum are finite sets,
$\delta: Q \times \sum \rightarrow Q$ is a function,
$q_{0} \in Q \underbrace{\text { ? ? }}_{\text {? and }} f$
Stor with examples...

Gld schod!
(1) - Reguler $c_{\text {ngghggos }}^{\overbrace{\text { sul set }}}$
(2) Contratet-free u can
$\left\{\begin{array}{l}\text { - Languages decided by Turin } \\ \text { machires } \\ \text { - Languryes recognizd ly Turin } \\ \text { machimes }\end{array}\right.$

Simple TV Watehing of mit 1970's:

3 majer retwarks, WGN, PBS

$$
A B C, C B S, N B C
$$

Typred woeknight:

A DFA is $\left(Q, \Sigma, \delta, q_{0}, F\right)$
(1) $Q=\{$ set of states $\}$ of the DFA here $\left\{\begin{array}{lll}\text { CBS } & \text { cBS } \\ 7_{\text {plal }} & 8_{\text {pmil }}\end{array}\right\}$
(2) $\sum=$ alphapet of the DFA
(3) $\delta: Q \times \sum \rightarrow Q$ transition functorn; idea $\begin{aligned} & \delta(q, \sigma)= \text { the state you } \\ & \text { transitin to }\end{aligned}$ transitin to
when in stite a
and y cu $\left\{\begin{array}{c}\text { read } \\ \text { get }\end{array}\right\} \sigma$
(4) $q_{0} \in Q$ designed as the initial state
(5) $E \subset Q$ called
the $\left\{\begin{array}{l}\text { accepting } \\ \text { final }\end{array}\right\}$ states
$=$
Idea!
given q_{0} initial state

$$
\rightarrow \text { and a }\left\{\begin{array}{c}
\text { wind } \\
\text { string }
\end{array}\right\}
$$

over the clphetiat \sum, take you to a state, if you lond in $F<Q$ then you state $\begin{cases}\text { Yes (accosted)) } \\ \text { ho (rejeded) }\end{cases}$

$$
F
$$

$=$
Each DEA requignizes a language $L \subset \sum_{6}^{k}$ Goal: End of Ch 1 - find min \# ar states of a DFA
that recognizes a giver
language

Language (DEA)

$$
!=\left\{\omega \in \sum^{*} \left\lvert\, \begin{array}{c}
\omega \text { is accent e } \\
\text { by } m
\end{array}\right.\right\}
$$

break for 5 minutes

$$
10: 11-10: 16
$$

(1) Tch unat to find UBC in a string over $\sum=\{B, C, O\}$ gwen $\operatorname{GUBBCCCc} \Theta$ given uuuvuuubcecc $\because \underset{\sim}{\ddot{v}}$

usuzlly

$$
\begin{aligned}
& Q=\left\{\left(i=, q_{1}, q_{2}, \Theta\right\}\right. \\
& \Sigma=\{B, C, u\} \\
& \delta: Q \times \Sigma \rightarrow Q \\
& \delta(\Theta, U)=q_{1} \\
& \delta(\Theta, B)=\Theta \\
& \delta(\Theta, C)=\Theta
\end{aligned}
$$

$$
\delta: Q \times \Sigma \rightarrow Q
$$

$$
\begin{aligned}
& q_{0}=(m \in Q \\
& F=\{\Theta\}
\end{aligned}
$$

Aidoths excmple:

$$
\begin{aligned}
& \sum=\{a\} \\
& L=\left\{a^{2}\right\}=\{a a\} \\
& \rightarrow O \xrightarrow{a}=O
\end{aligned}
$$

$$
\begin{aligned}
& L=\left\{a^{3}, a^{4}\right\} \quad \sum=\{a\} \\
& \rightarrow O \stackrel{a}{\rightarrow} O \stackrel{c}{\rightarrow} \\
& a O O \leftarrow+
\end{aligned}
$$

Thm! If $L \subset \sum^{*}$ is recognizel by a $D E A$, M, i.e. for same M
we have

$$
L=\left\{w \in \sum^{*}\left\{\begin{array}{l}
\text { cn input } w, \\
\text { the DfA, } m, \\
\left\{\begin{array}{l}
\text { arcept } \\
\text { Jes }
\end{array}\right\} w
\end{array}\right\}\right.
$$

then there ir a $D F A, m^{\prime}$, thet recognitos

$$
\begin{aligned}
& L^{*} \frac{d r}{x} s\left\{\begin{array}{r}
\text { all strings } 4 L_{a} \text { are } \\
\text { Eencatcrations of } \\
\text { elerents of } L
\end{array}\right\} \\
& =\left\{\omega_{1} \ldots \omega_{k} \mid \omega_{1}, \ldots, \omega_{k} \in L\right\}
\end{aligned}
$$

We view

$$
L \subset \sum^{k}
$$

as a "problem" to solve, i.e. we want a DFA

$$
M=\left(Q, \varepsilon, \delta, q_{0}, F\right)
$$

sit.

$$
L=\left\{w \in \mathcal{E}^{*} \left\lvert\, \begin{array}{c}
m \text { accepts } \\
w
\end{array}\right.\right\}
$$

Def $L \subset \sum^{e}$ is regular if there is a DFA that
recognizes L.

Regular Languyes
incluele

$$
\sum=\{u, B, C\}
$$

$\left\{\begin{array}{l}\text { stangs, } w \text {; over } U, B, C \text { sit. somy } \\ \text { substring aS } W \text { equals } \cup B C\}\end{array}\right\}$

$$
\begin{aligned}
& \left\{a^{2}\right\}<\mathcal{L}^{*}, \sum=\{\varepsilon\} \\
& \left\{a^{3}, a^{4}\right\}=\{a a a, a a a a\} \\
& c \sum^{*}, \quad \sum=\{c\}
\end{aligned}
$$

are all regular.
Nar-regular langurges $\left\{\begin{array}{l}1,4 \text { [sip] } \\ \text { myhil-Hercde }\end{array}\right.$
eig. $\quad \Sigma=\{a\}$

$$
\left\{\omega=a^{n} \mid n \text { is prime }\right\}
$$

$=$

$$
\left\{a^{2}, a^{3}, a^{5}, c^{7}, a^{11}, \cdots\right\}
$$

is not regulto, ar non-regular

