CPSC 421 So 1 Sept 21,2021
Q: Why study $\oint 4.2$ of [Sip] first abstractly, and then again? There are many answers.
(1) "In mathematics you don't understand things. You just get used to them."

Johnny) vow Neumann, via $\left[\begin{array}{c}\rightarrow \text { Warren Dicks' homepage: } \\ h+t p s: / l \text { mat. uab. cat / ~ dicks } \\ \rightarrow \text { verified this is } \\ \rightarrow \text { the real Warren Dicks }\end{array}\right]$

Announcements:

- Office hours posted (8 pm office hour Zoom only, will disappear if no one shows up)
- Masks - fully covering Nose and mouth when worn indoors

$$
\left[-N_{0} \text { candy today }(\stackrel{i}{)}]\right.
$$

- Truth \& Reconcilliation! Sept 30

Class answers!
(A) och gel used to it, makes yon less anxious.
(B) You can be locking for the details you already recognize.
$\left.\begin{array}{ccc}\text { Cf' }{ }^{\prime \prime} \text { Elders } & \text { Game } \\ \text { (B armed } & \text { Shadow }\end{array}\right\}$
Video games
Black Mirror $\quad\left\{\begin{array}{l}\text { exhdr Chron } \\ \text { examine ado }\end{array}\right.$
(d) Olga... Todd exangle of (editing Wilbert's) zetted

E
(F)
G
(t)

Add page?

MORE OF MY ANSWERS
(2) J.C. talk about losing script and rewrittry, $2^{\text {nd }}$ version better than first. Work not really lost...
(3) Student who unknowing learned
(4) When I took the same course in the late 1970's, I could do the problem sets, but felt totally confused. And I still do with this same proof.
(5) Abstractly, we get to the bare minimum
(6) Klaus Hoechsmann's
approach to teaching introduction (first term, honours, non-honours, etc.) - $1^{\text {st }} 2$ weeks! teach entire course for 2×2 systems $(2 \times 2$ eigenvalues, etc. $)$
(7) Some textbooks lack sufficient motivation, at least from my point of view, but I don't have the time to...
(8) First week or two is geed for shopping...

GOALS FOR TODAY

- What does $|S|<|T|$ mean for infinite sets?
- Show \exists undecidable (or even unrecognizable, etc.) problems
- Start "Abstract" undecidability
of

$$
\begin{gathered}
\text { ACEEPTANCE } \stackrel{\text { def }}{=} \\
\{\text { EncodeBoth }(p, i) \mid \\
\text { Result }(\rho, i)=\text { yes }\}
\end{gathered}
$$

Last time:

$$
\begin{aligned}
& \text { Programs } C \text { ASCII* } \\
& \binom{\text { Prof }}{\text { Pigcors }} \int \begin{array}{ll}
\text { wand } & \text { (linguists) } \\
\text { sting } & \text { (ip] })
\end{array} \\
& I_{\text {inputs }}=A S C I I^{*} \\
& \text { (Ice Cream) } \\
& \text { Languages }=\operatorname{Power}\left(A S C I J^{*}\right) \\
& \text { = Set of all subsets } \\
& \text { of ASCIJ* }
\end{aligned}
$$

$$
\operatorname{Power}(S)=2^{s}
$$

$\stackrel{\text { def }}{=}$ set of all subsets of S
Cantor's Theorem:
$|S|$ is suncllor $\begin{gathered}\text { sgar then } \\ \left|2^{s}\right|\end{gathered}$

$$
\begin{gathered}
=\mid \text { Powed }(5) \mid \\
=\mid\{\text { Fet of all Bubeds of } 5\} \mid)
\end{gathered}
$$

Finite anse?

any map of sets
Ire: If $(-p|<|\mathscr{L}|$ then some element of \mathcal{L} is not in the image of f.

Whet does it meem for infinite set p, \mathcal{L} to say $|-p|<|\mathcal{T}|$
(1) $\forall f: p \rightarrow \mathcal{L}$

Image (f) is not all of \mathcal{L}.
(2)

$$
\begin{aligned}
& \mathbb{N}=\{1,2,3, \ldots\} \\
& \mathbb{Z}=\{0,1,-1,2,-2, \ldots\} \\
& \mathbb{N} \underset{\text { struct }}{C} \mathbb{Z}
\end{aligned}
$$

Sine:

$$
\begin{aligned}
& \mathbb{N}=\{1,2,3, \ldots\} \\
& \mathbb{Z}=\{\ldots,-1,0,1,2,3, \ldots\}
\end{aligned}
$$

$$
\mathbb{T}_{2}=\underbrace{\left\{\begin{array}{l}
\text { ratirid numbos in } \\
\mathbb{R}
\end{array}\right\}}_{\text {is courtable }}
$$

min
breck

$$
f!S \rightarrow T
$$

$$
\left.\begin{array}{rl}
\operatorname{Image}(f)= & \{t \in T \mid \exists s \in S\} \\
\text { sit. } f(s)=t
\end{array}\right\}
$$

Prats $\stackrel{f}{\longrightarrow}$ Bird Sutr

$$
I_{\text {mege }}(f)=\{1,2,5\}
$$

Vat in imese

$$
\begin{aligned}
& \text { Powen } \\
& \operatorname{Pcurs}(\{1,2\}) \\
& =\{\phi,\{1\},\{2\},\{1,2\}\} \\
& \operatorname{Pcurs}(\{1,2,3\}) \\
& \left.\begin{array}{rl}
= & \{\phi,\{1\},\{2\},\{3\}, \\
& \{1,2\},\{1,3\},\{2,3\}, \\
\{1,2,3\}
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \{1,2\} \sin x,\{2,1\} \\
& (1,2) \text { sinc }(2,7)
\end{aligned}
$$

Strings aver a, b :

$$
\begin{aligned}
& \{\varepsilon,(a),(b),(a, a), \\
& \quad(a, b),(b, a),(b, b), \ldots
\end{aligned}
$$

Sequarces
typrally write

$$
(a, a, b, a)
$$

as $a a b a$

Hi there!

$$
(\downarrow, i, u,+, h, c, r, e, i)
$$

Chapter 0 of [Sip]

Now Cantor's Theorem with 3×3 example 2×2 ?

Break 4×4 ?

Universal Th, Encoar, etc...

A set is countably/ if it is in bijection with
(1)

$$
\mathbb{N}=\{1,2,3, \ldots\}
$$

Finite, Cantally Infinite
Uncountable
Countable $=$ Either Finite or Cartally Infinite

Finite
Countably Infixes
$\mathbb{N} \xrightarrow{9} \mathbb{Z}$

$$
\begin{aligned}
& 1 \\
& 2 \longrightarrow 0 \\
& \text { (3) } \longmapsto-1 \\
& 4 \longmapsto-2 \\
& 5 \longmapsto 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { for all } n=\{0,1,2, \ldots\} \\
& g(2 n+1)=n \\
& g(2 n)=-n \\
& = \\
& \mathbb{E}= \\
& \{0,-1,1,-2,2, \ldots\}
\end{aligned}
$$

exhaustive sequence Caveat:

$$
\begin{array}{r}
\{1,2\}=\{1,2,2,2,2, \ldots\} \\
\{1,2\} \leftrightarrow \\
S_{1}, S_{2}, S_{3}, S_{4,} \ldots \\
1,2,2,2, \ldots
\end{array}
$$

countable
(2) There exists a sequence

$$
\begin{aligned}
& S_{1}, S_{2}, S_{3, \ldots}, \quad S_{1} \in S \\
& \text { and } \\
& \left\{S_{1}, S_{2}, \ldots\right\}=S
\end{aligned}
$$

The retrancls are cantalle $\begin{array}{lllllll}0 & -1 & 1 & -2 & 3\end{array}$

strict bijection

$$
\begin{aligned}
& \frac{0}{1}, \frac{-1}{1}, \frac{0}{2}, \frac{1}{1}, \frac{-1}{2}, \frac{0}{3}, \ldots \\
& 0,-1, \frac{1}{8}, 1, \frac{-1}{2}, \frac{8}{2}, \ldots
\end{aligned}
$$

$\mathbb{N} \subset \mathbb{Z}$ but can be put into $1-1$ bijection

All this (are mere) in

$$
[\text { Sip }]\{4,2
$$

Exercise: Show the there are uncountably many bijectbien

$$
巴 \rightarrow \circlearrowright
$$

$$
\begin{aligned}
& \overbrace{\text { ASCII }}^{\text {cantrible }} \xrightarrow{g} \overbrace{\left(\text { bijectimes }^{\mathbb{Z}} \rightarrow \mathbb{Z}\right)}^{\text {Uneountable }} \\
& \Rightarrow)
\end{aligned}
$$

there is no way to describe all bijections $\mathbb{Z} \rightarrow \mathbb{Z}$ in "words"

Thm: If g is cmup $g: A S C I I^{*} \rightarrow($ bijectione $\mathbb{Z} \rightarrow \mathbb{2})$ then g is not surjective,

Image (g) is not all of $($ bijedice $\mathbb{Z} \rightarrow \mathbb{Z})$

insist
 by this notation the f is a function

So f here is a fixed interpretation. exhaustive sec
vs " " wis distind clements

