A Brief Tour of Term Rewriting

Zack Grannan, CPSC 501 December 7th, 2021

Term Rewriting Systems

- What are Term Rewriting Systems?
 - A model for transforming *terms* via application of *rewrite rules*
 - Rules define structural transformations
- Why are Term Rewriting Systems Useful?
 - Can serve as a nondeterministic model of computation
 - Expressive, but with very simple syntax and semantics
 - Admit interesting properties (today: Termination and Confluence)

Today

- 1. Introduce Term Rewriting Systems
- 2. Describe Properties of Term Rewriting Systems
 - 1. Confluence
 - 2. Termination
- 3. Prove Termination of Term Rewriting Systems

Today

- 1. Introduce Term Rewriting Systems
- 2. Describe Properties of Term Rewriting Systems
 - 1. Confluence
 - 2. Termination
- 3. Prove Termination of Term Rewriting Systems

We consider terms built from an alphabet $\Sigma = (F, V)$ such that:

- F is a set of *function* symbols, each associated with an arity
 - The arity of a function is the number of arguments it is supposed to have
 - We denote the arity of a function f as $\alpha(f)$
- V is a countably infinite set of variables (typically denoted $x, x_1, y, y_1, ...$)

Terms over Σ are denoted as $T(\Sigma)$, where:

1. $x \in V \implies x \in T(\Sigma)$

2.
$$f \in F \land \alpha(f) = n \land t_1, \dots, t_n \in$$

To make things look nice:

- If $\alpha(f) = 0$, we can write f() as f
- If $\alpha(f) = 2$, we can write f(t, u) as t f u

$\in T(\Sigma) \implies f(t_1, \dots, t_n) \in T(\Sigma)$

$F = \{z, s, +\}$

$F = \{z, s, +\}$

- Z
- ζ

$F = \{z, s, +\}$

Z

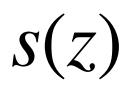
S(Z)

$F = \{z, s, +\}$

S(Z)

S(S(Z))

$F = \{z, s, +\}$



 $F = \{z, s, +\}$

z + z

$F = \{z, s, +\}$ z + zZ

z + s(z)

S(S(Z))

$F = \{z, s, +\}$

S(Z)

S(S(Z))

• • •

z + z

z + s(z)

s(z) + s(z)

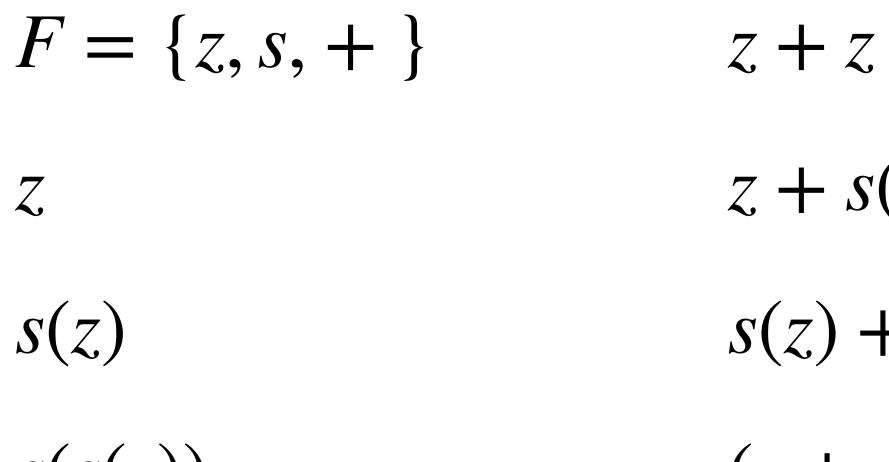
 $F = \{z, s, +\}$ Z S(Z)

S(S(Z))

• • •

z + s(z)s(z) + s(z)(z + z) + s(z)

z + z



S(S(Z))

• • •

z + s(z)s(z) + s(z)(z + z) + s(z)

- $t' \rightarrow_r u'$ if t "matches" some subterm s of t' via a substitution σ
- u' is the result of replacing s in t' with substitution σ applied to u'

- $t' \rightarrow_r u'$ if t "matches" some subterm s of t' via a substitution σ
- u' is the result of replacing s in t' with substitution σ applied to u'Example:
 - Rewrite Rule $r: x + z \rightarrow x$

- $t' \rightarrow_r u'$ if t "matches" some subterm s of t' via a substitution σ
- u' is the result of replacing s in t' with substitution σ applied to u'Example:
 - Rewrite Rule $r: x + z \rightarrow x$
 - Application (s(z) + z) + s(z)

- $t' \rightarrow_r u'$ if t "matches" some subterm s of t' via a substitution σ
- u' is the result of replacing s in t' with substitution σ applied to u'Example:
 - Rewrite Rule $r: x + z \rightarrow x$
 - Application (s(z) + z) + s(z)

- $t' \rightarrow_r u'$ if t "matches" some subterm s of t' via a substitution σ
- u' is the result of replacing s in t' with substitution σ applied to u'Example:
 - Rewrite Rule $r: x + z \rightarrow x$
 - Application $(s(z) + z) + s(z) \rightarrow_r s(z) + s(z)$

A rewrite rule r is a pair of terms (t, u), denoted $r : t \to u$ or simply $t \to u$

A substitution σ is a mapping $V \rightarrow T$

• $\sigma(t)$ denotes the replacement of each variable $v \in t$ with $\sigma(v)$

A context C is a term with a single "hole", e.g. $f(x, \Box)$ or the trivial context \Box

• C[t] represents the term obtained by filling the hole with t, e.g f(x, t) or t

A rewrite rule $r: t \to u$ defines a binary relation \to_r where:

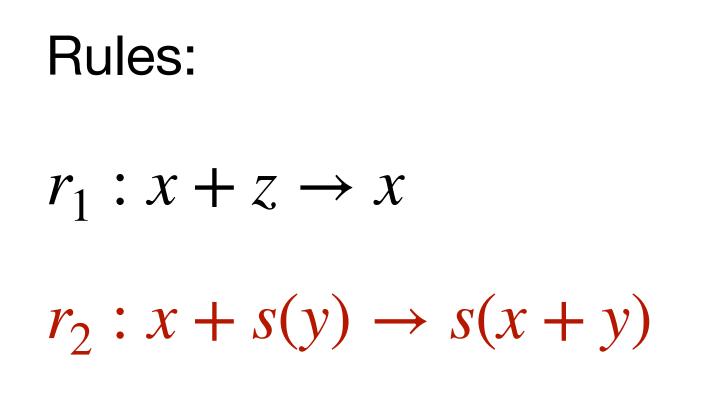
 $C[\sigma(t)] \rightarrow_r C[\sigma(u)]$ for all contexts *C*, substitutions σ

Rules:

 $r_1: x + z \to x$ $r_2: x + s(y) \to s(x + y)$

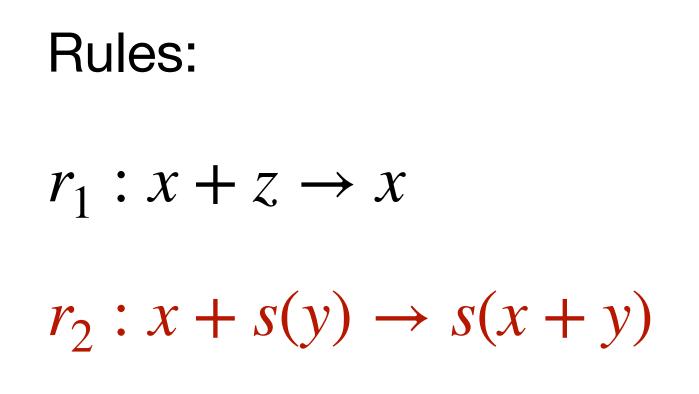
Rewriting:

s(z) + s(s(z))



 $\sigma = \{x \to s(z), y \to s(z)\}$ $C = \Box$

Rewriting: $s(z) + s(s(z)) \rightarrow_{r_2}$ s(s(z) + s(z))



 $\sigma = \{x \to s(z), y \to z\}$ $C = s(\Box)$

Rewriting: $s(z) + s(s(z)) \rightarrow_{r_2}$ $s(s(z) + s(z)) \rightarrow_{r_2}$ $s(s(z) + s(z)) \rightarrow_{r_2}$

Rules: $r_1: x + z \rightarrow x$ $r_2: x + s(y) \rightarrow s(x + y)$

 $\sigma = \{x \to s(z)\}$ $C = s(s(\Box))$

Rewriting: $s(z) + s(s(z)) \rightarrow_{r_2}$ $s(s(z) + s(z)) \rightarrow_{r_2}$ $s(s(s(z) + z)) \rightarrow_{r_1}$

S(S(S(Z)))

A Term Rewriting System is the pair (Σ, R) where:

- Σ is an alphabet, and
- R is a set of rewrite rules over $T(\Sigma)$

Typically, the rewrite rules denote axioms for some theory

A TRS defines a binary relation \rightarrow_R on $T(\Sigma)$, such that:

• $t \rightarrow_R u$ iff u can be obtained from t by applying a rule from R

Reasoning Enabled by TRS

A relation of interest is \rightarrow_R^* , the reflexive transitive closure of \rightarrow_R Intuition: $t \to_R^* u$ iff u can be obtained from t by applying zero or more rewrite rules from *R*

the set: $\{u \in T \mid t \to_R^* u\}$

A common application: compute the set of terms obtained via rewriting from t, namely

Reasoning Enabled by TRS

A relation of interest is \rightarrow_R^* , the reflexive transitive closure of \rightarrow_R Intuition: $t \to_R^* u$ iff u can be obtained from t by applying zero or more rewrite rules from *R*

the set: $\{u \in T \mid t \to_R^* u\}$

Also of interest: obtaining the *normal form* of t.

Find a *u* such that $t \to_R^* u \land \neg(\exists v \, . \, u \to_R v)$

A common application: compute the set of terms obtained via rewriting from t, namely

 $r_1: T \land x \to x$ $r_2: F \land x \to F$ $r_3: T \lor x \to T$ $r_4: F \lor x \to x$ $r_5: \operatorname{not}(T) \to F$ $r_6: \operatorname{not}(F) \to T$

$(T \lor F) \land \mathsf{not}(F)$

 $r_{1}: T \land x \rightarrow x$ $r_{2}: F \land x \rightarrow F$ $r_{3}: T \lor x \rightarrow T$ $r_{4}: F \lor x \rightarrow x$ $r_{5}: \operatorname{not}(T) \rightarrow F$

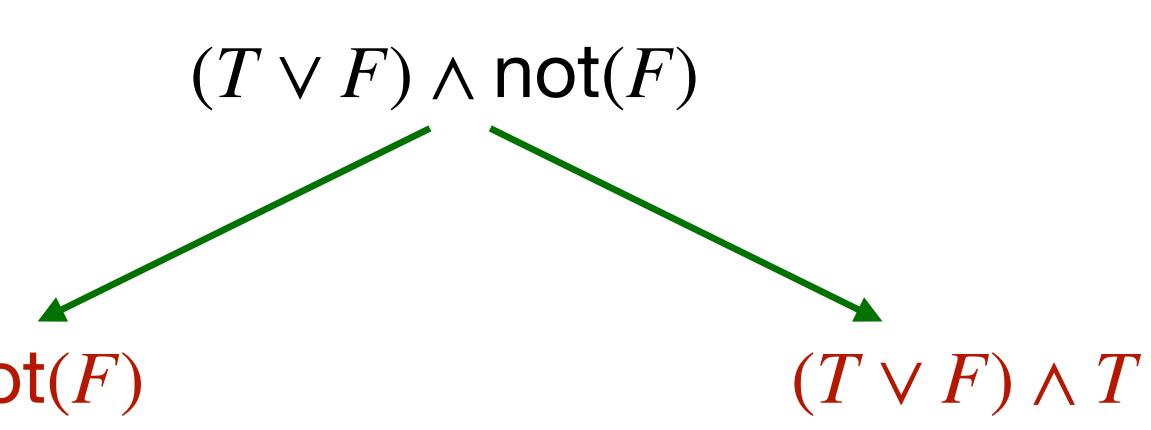
 $r_6: \operatorname{not}(F) \to T$

$(T \lor F) \land \mathsf{not}(F)$

 $r_{1}: T \land x \rightarrow x$ $r_{2}: F \land x \rightarrow F$ $r_{3}: T \lor x \rightarrow T$ $r_{4}: F \lor x \rightarrow x$ $r_{5}: \operatorname{not}(T) \rightarrow F$

 $T \wedge \operatorname{not}(F)$

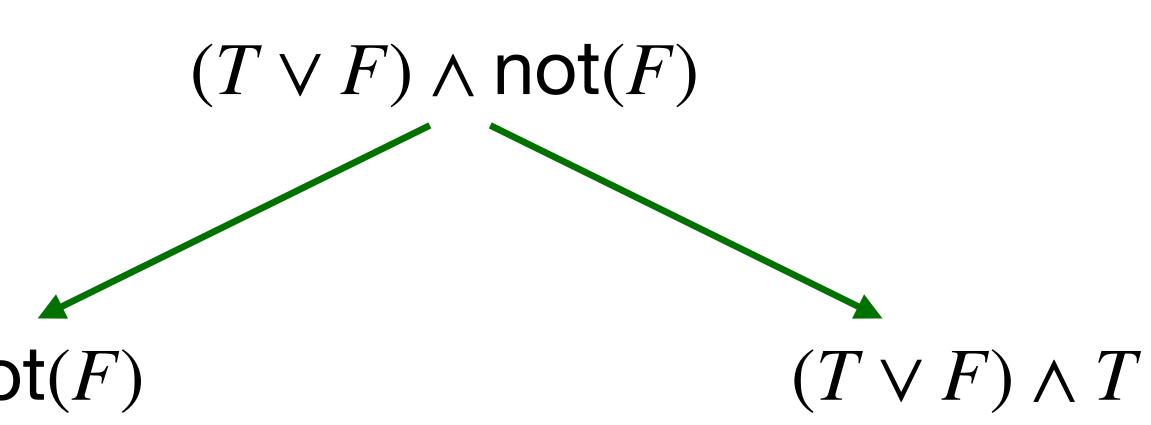
 $r_6: \operatorname{not}(F) \to T$



 $r_{1}: T \land x \rightarrow x$ $r_{2}: F \land x \rightarrow F$ $r_{3}: T \lor x \rightarrow T$ $r_{4}: F \lor x \rightarrow x$ $r_{5}: \operatorname{not}(T) \rightarrow F$

 $r_6: \operatorname{not}(F) \to T$

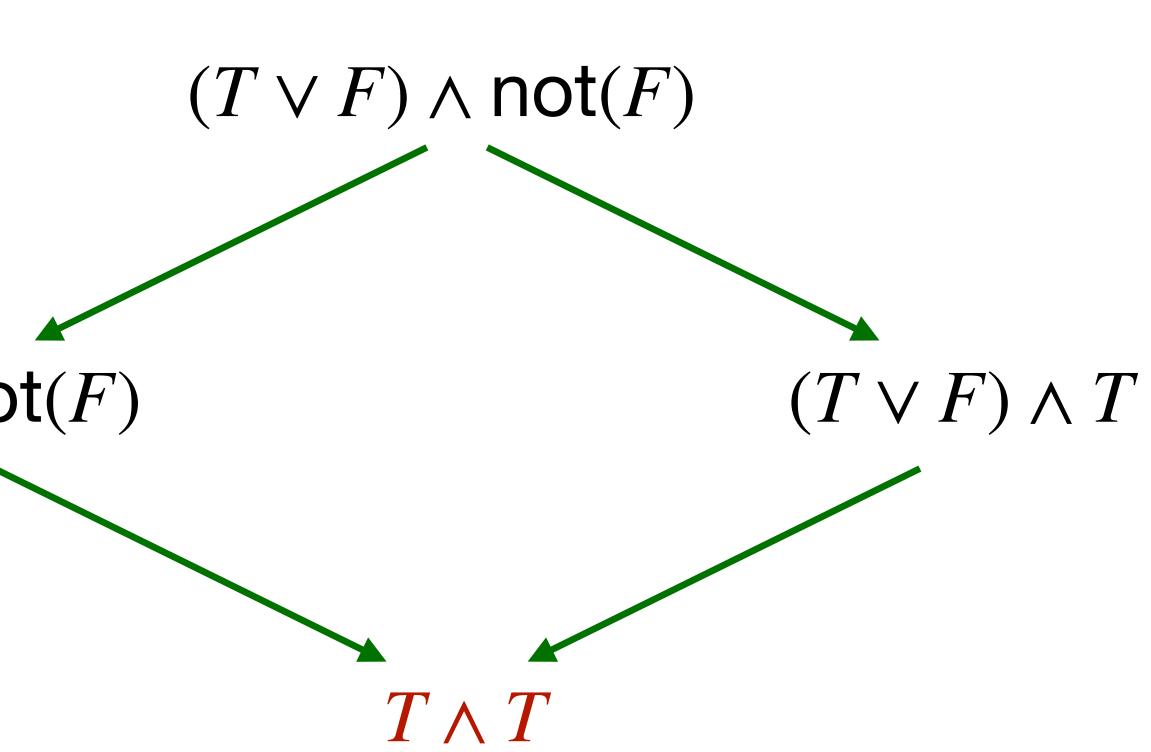
 $T \wedge \operatorname{not}(F)$



 $r_{1}: T \land x \rightarrow x$ $r_{2}: F \land x \rightarrow F$ $r_{3}: T \lor x \rightarrow T$ $r_{4}: F \lor x \rightarrow x$ $r_{5}: \operatorname{not}(T) \rightarrow F$

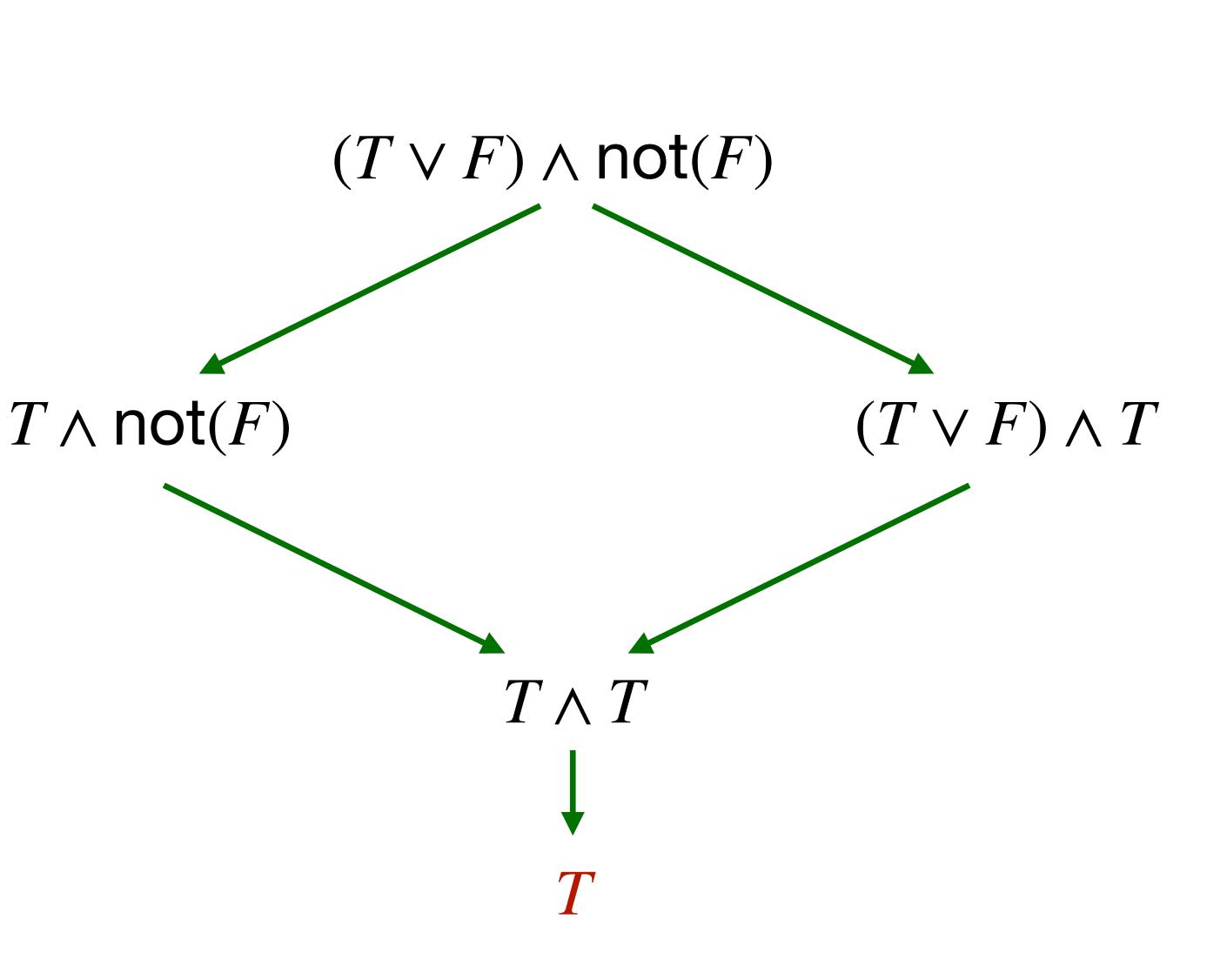
 $T \wedge \mathsf{not}(F)$

 $r_6: \operatorname{not}(F) \to T$



 $r_{1}: T \land x \rightarrow x$ $r_{2}: F \land x \rightarrow F$ $r_{3}: T \lor x \rightarrow T$ $r_{4}: F \lor x \rightarrow x$ $r_{5}: \operatorname{not}(T) \rightarrow F$

 $r_6: \operatorname{not}(F) \to T$



Real-World Applications of Term Rewriting

- Automated Theorem Proving (Equality Saturation)
 - Egg (Willsey et al, 2021)
- Proving Program Termination
 - AProVe (Giesl, Thiemann, Schneider-Kamp, & Falke, 2004)
- Implementing Decision Procedures for Equational Theories
 - Knuth-Bendix Completion (Knuth & Bendix, 1983)

Today

- 1. Introduce Term Rewriting Systems
- 2. Describe Properties of Term Rewriting Systems
 - 1. Confluence
 - 2. Termination
- 3. Prove Termination of Term Rewriting Systems

Informally, a TRS is *confluent* if the ordering of the rewrite steps do not matter. Term rewriting is nondeterministic:

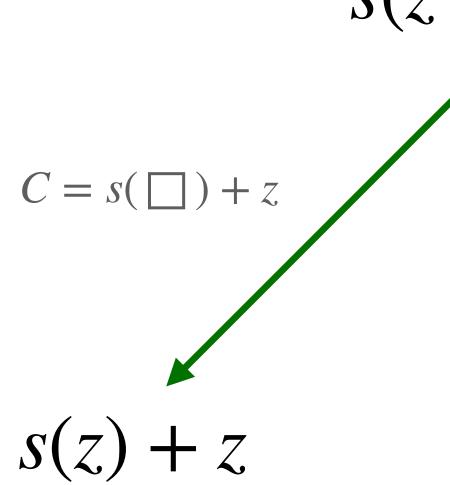
- A single rewrite rule might apply at different locations in a term
- Two rewrite rules may apply to the same term

Formally:

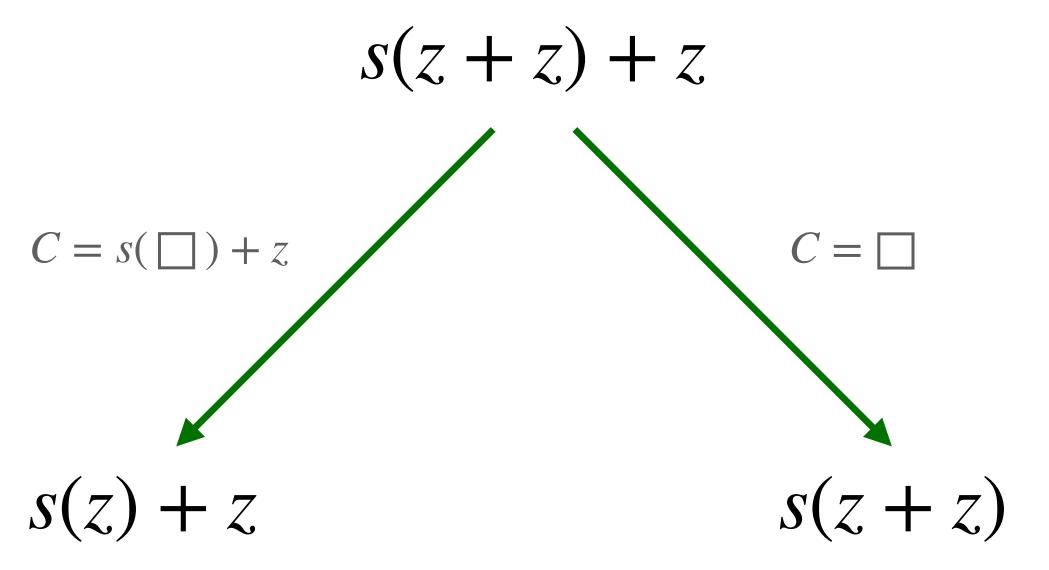
$$t \to_R^* u_1 \wedge t \to_R^* u_2 \implies \exists w \, . \, u_1 \to_R^* w \wedge u_2 \to_R^* w$$

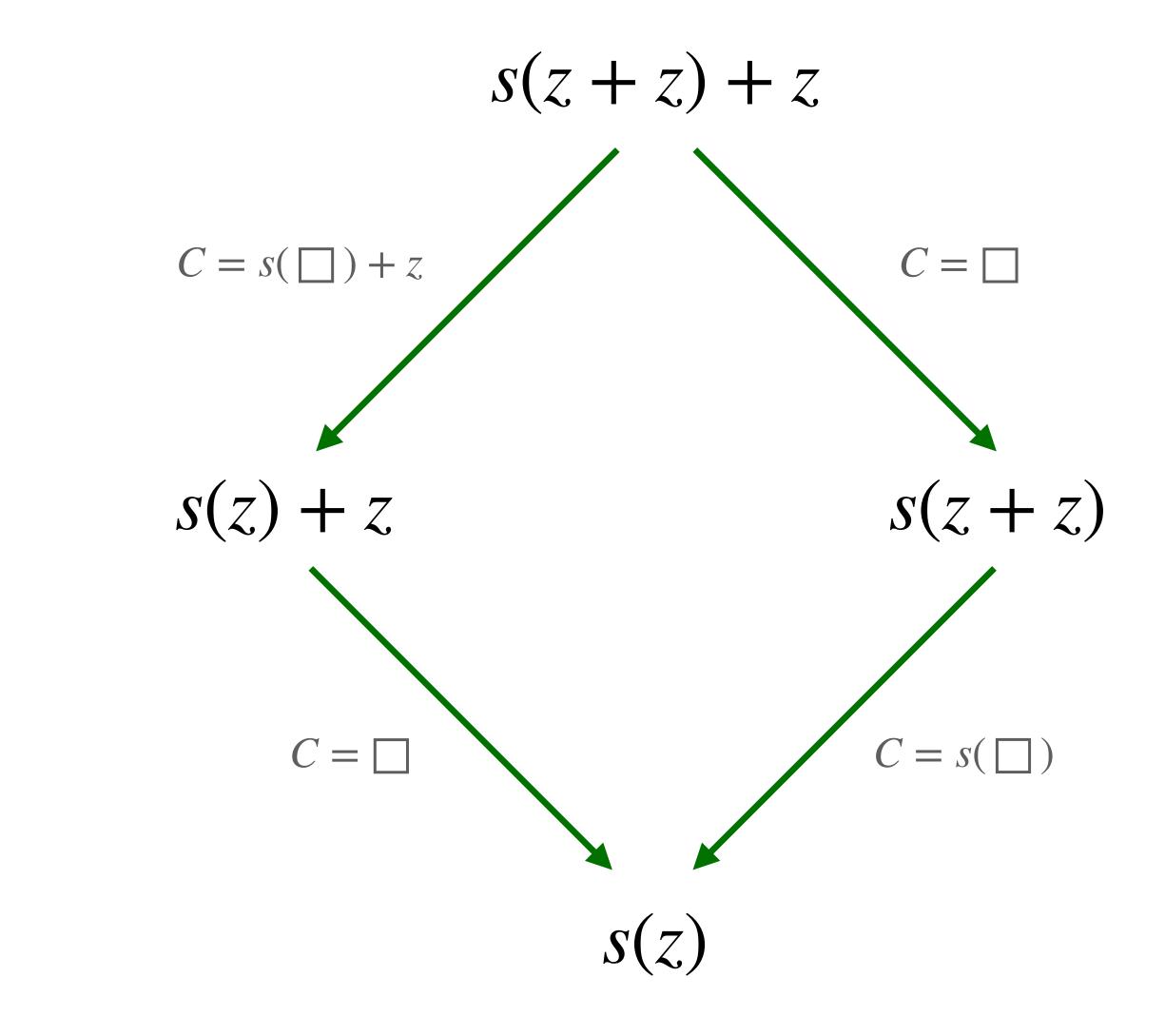
ly at different locations in a term the same term

s(z + z) + z



s(z + z) + z





A TRS (Σ, R) is terminating if there do not exist infinite chains of the form:

 $t_1 \rightarrow_R t_2 \rightarrow_R \dots$

A TRS (Σ, R) is terminating if there do not exist infinite chains of the form: $t_1 \rightarrow_R t_2 \rightarrow_R \dots$

Consider a rule for "commutativity" $r : x + y \rightarrow y + x$

We could then have:

s(z) + z

A TRS (Σ, R) is terminating if there do not exist infinite chains of the form: $t_1 \rightarrow_R t_2 \rightarrow_R \dots$

Consider a rule for "commutativity" $r : x + y \rightarrow y + x$

We could then have:

 $s(z) + z \rightarrow_r z + s(z)$

A TRS (Σ, R) is terminating if there do not exist infinite chains of the form: $t_1 \rightarrow_R t_2 \rightarrow_R \dots$

Consider a rule for "commutativity" $r : x + y \rightarrow y + x$

We could then have:

 $s(z) + z \rightarrow_r z + s(z) \rightarrow_r s(z) + z$

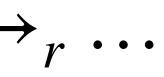
 $t_1 \rightarrow_R t_2 \rightarrow_R \dots$

Consider a rule for "commutativity" $r: x + y \rightarrow y + x$

We could then have:

 $s(z) + z \rightarrow_r z + s(z) \rightarrow_r s(z) + z \rightarrow_r \dots$

A TRS (Σ, R) is terminating if there do not exist infinite chains of the form:



Why do we care?

- If a TRS for a given theory is terminating and confluent, then it defines a decision procedure for equality in that theory
 - Simply obtain the normal form for each term and compare
 - For more info see (Knuth & Bendix, 1983)
- Various techniques exist for proving termination of rewriting
 - If you want to prove your program terminates, express it as a TRS and prove termination of the TRS

Today

- 1. Introduce Term Rewriting Systems
- 2. Describe Properties of Term Rewriting Systems
 - 1. Confluence
 - 2. Termination
- 3. Prove Termination of Term Rewriting Systems

A TRS (Σ, R) is terminating if there do not exist infinite chains of the form: $t_1 \rightarrow_R t_2 \rightarrow_R \dots$

Is it possible to decide in general?

A TRS (Σ, R) is terminating if there do not exist infinite chains of the form: $t_1 \rightarrow_R t_2 \rightarrow_R \dots$

Is it possible to decide in general?

No! You can implement a Turing machine as a TRS!

In fact, a Turing machine can be implemented as a single rewrite rule.

A TRS (Σ, R) is terminating if there do not exist infinite chains of the form: $t_1 \rightarrow_R t_2 \rightarrow_R \dots$

Is it possible to decide sometimes?

A Simple Recipe for Proving Termination

1. Define a function $S: T \to \mathbb{N}$

A Simple Recipe for Proving Termination

- 1. Define a function $S: T \to \mathbb{N}$
- 2. Ensure that for all t, u we have $t \to_R u \implies S(t) > S(u)$

A Simple Recipe for Proving Termination

- 1. Define a function $S: T \to \mathbb{N}$
- 2. Ensure that for all t, u we have $t \to_R u \implies S(t) > S(u)$

Why this works:

For any initial term t, then S(t) is an arbitrary integer n.

There are n-1 numbers that are less than n, so the longest path starting at t has at most n steps.

Consider the following rewrite rules:

$$r_{1}: T \land x \rightarrow x$$

$$r_{2}: F \land x \rightarrow F$$

$$r_{3}: T \lor x \rightarrow T$$

$$r_{4}: F \lor x \rightarrow x$$

$$r_{5}: \operatorname{not}(T) \rightarrow F$$

$$r_{6}: \operatorname{not}(F) \rightarrow T$$

Consider the following rewrite rules:

 $r_1: T \wedge x \to x$ $r_2: F \wedge x \to F$ $r_3: T \lor x \to T$ $r_4: F \lor x \to x$ $r_5: \operatorname{not}(T) \to F$ $r_6: \operatorname{not}(F) \to T$

Let S(t) denote the number of symbols in the term. For each rule r_i , we require $t \to_{r_i} u \implies S(t) > S(u)$

Consider the following rewrite rules: $r_1: T \wedge x \to x$ $r_2: F \wedge x \to F$ $r_3: T \lor x \to T$ $r_4: F \lor x \to x$ $r_5: \operatorname{not}(T) \to F$ $r_6: \operatorname{not}(F) \to T$

- Let S(t) denote the number of symbols in the term. For each rule r_i , we require $t \rightarrow_{r_i} u \implies S(t) > S(u)$
- S(t) > S(t) 2
- $S(t) > S(t) S(\sigma(x)) 1$
- $S(t) > S(t) S(\sigma(x)) 1$
- S(t) > S(t) 2
- S(t) > S(t) 1
- S(t) > S(t) 1

A General Recipe for Proving Termination

- on N

• Recall: The simple recipe worked by mapping elements of T to elements of $\mathbb N$

• An infinite descent of \rightarrow_R on T would correspond to an infinite descent of >

Infinite descent of > on \mathbb{N} is not allowed because > is well-founded on \mathbb{N} .

A General Recipe for Proving Termination

- Recall: The simple recipe worked by mapping elements of T to elements of $\mathbb N$ • An infinite descent of \rightarrow_R on T would correspond to an infinite descent of >
- on N
- Infinite descent of > on \mathbb{N} is not allowed because > is well-founded on \mathbb{N} .
- Thus the general recipe for proving termination is:
 - Show that an infinite computation would correspond to an infinite descent in a well-founded relation

Conclusion

- Term Rewriting Systems can serve as expressive yet simple model of computation
- TRS admit interesting properties such as confluence and termination
- In some cases it is possible to prove termination of a TRS

Bibliography

Giesl, J., et al. (2004). <u>Automated termination proofs with AProVE</u>. International Conference on Rewriting Techniques and Applications, Springer.

Klop, J. W. and J. Klop (1990). <u>Term rewriting systems</u>, Centrum voor Wiskunde en Informatica.

Knuth, D. E. and P. B. Bendix (1983). Simple word problems in universal algebras. <u>Automation of Reasoning</u>, Springer: 342-376.

Willsey, M., et al. (2021). "Egg: Fast and extensible equality saturation." <u>Proceedings of the ACM on Programming Languages (POPL)</u>: 1-29.