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Term Rewriting Systems

• What are Term Rewriting Systems? 

• A model for transforming terms via application of rewrite rules 

• Rules define structural transformations 

• Why are Term Rewriting Systems Useful? 

• Can serve as a nondeterministic model of computation


• Expressive, but with very simple syntax and semantics


• Admit interesting properties (today: Termination and Confluence)



Today

1. Introduce Term Rewriting Systems


2. Describe Properties of Term Rewriting Systems


1. Confluence


2. Termination


3. Prove Termination of Term Rewriting Systems



Today

1. Introduce Term Rewriting Systems


2. Describe Properties of Term Rewriting Systems


1. Confluence


2. Termination


3. Prove Termination of Term Rewriting Systems



Term Rewriting Systems, Formally
From (Klop, 1990)

We consider terms built from an alphabet  such that:


•  is a set of function symbols, each associated with an arity 


• The arity of a function is the number of arguments it is supposed to have


• We denote the arity of a function  as 


•  is a countably infinite set of variables (typically denoted )

Σ = (F, V)

F

f α( f )

V x, x1, y, y1, …



Term Rewriting Systems, Formally

Terms over  are denoted as , where:


1. 


2. 


To make things look nice:


• If , we can write  as 


• If , we can write  as 

Σ T(Σ)

x ∈ V ⟹ x ∈ T(Σ)

f ∈ F ∧ α( f ) = n ∧ t1, …, tn ∈ T(Σ) ⟹ f(t1, …, tn) ∈ T(Σ)

α( f ) = 0 f() f

α( f ) = 2 f(t, u) t f u

From (Klop, 1990)



Example: Addition and Peano Numbers


F = {z, s, + }
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Term Rewriting Systems, Informally

A rewrite rule  is a pair of terms , denoted  or simply 


A rewrite rule  defines a binary relation  on , informally:


•   if  “matches” some subterm  of  via a substitution 


•  is the result of replacing  in  with substitution  applied to 


r (t, u) r : t → u t → u

r : t → u →r T

t′ →r u′ t s t′ σ

u′ s t′ σ u′ 

From (Klop, 1990)
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Term Rewriting Systems, Formally

A rewrite rule  is a pair of terms , denoted  or simply 


A substitution  is a mapping  

•  denotes the replacement of each variable  with 


A context  is a term with a single “hole”, e.g.   or the trivial context 


•  represents the term obtained by filling the hole with , e.g  or  

A rewrite rule  defines a binary relation  where:


  for all contexts , substitutions 

r (t, u) r : t → u t → u

σ V → T

σ(t) v ∈ t σ(v)

C f(x, □ ) □

C[t] t f(x, t) t

r : t → u →r

C[σ(t)] →r C[σ(u)] C σ

From (Klop, 1990)
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r1 : x + z → x

r2 : x + s(y) → s(x + y)

σ = {x → s(z), y → s(z)}
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r1 : x + z → x
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σ = {x → s(z)}

C = s(s( □ ))



Term Rewriting Systems, Finally

A Term Rewriting System is the pair  where:


•   is an alphabet, and 


•  is a set of rewrite rules over 


Typically, the rewrite rules denote axioms for some theory


A TRS defines a binary relation  on , such that:


•  iff u can be obtained from  by applying a rule from 

(Σ, R)

Σ

R T(Σ)

→R T(Σ)

t →R u t R

From (Klop, 1990)
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A common application: compute the set of terms obtained via rewriting from , namely 
the set: 


→*R →R

t →*R u u t
R

t
{u ∈ T | t →*R u}



Reasoning Enabled by TRS

A relation of interest is , the reflexive transitive closure of 


Intuition:  iff  can be obtained from  by applying zero or more rewrite rules 
from 


A common application: compute the set of terms obtained via rewriting from , namely 
the set: 


Also of interest: obtaining the normal form of .


 Find a  such that 

→*R →R

t →*R u u t
R

t
{u ∈ T | t →*R u}

t

u t →*R u ∧ ¬(∃v . u →R v)
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r1 : T ∧ x → x

r2 : F ∧ x → F

r3 : T ∨ x → T

r4 : F ∨ x → x

r5 : not(T) → F

r6 : not(F) → T

(T ∨ F) ∧ not(F)
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Real-World Applications of Term Rewriting

• Automated Theorem Proving (Equality Saturation)


• Egg (Willsey et al, 2021)


• Proving Program Termination


• AProVe (Giesl, Thiemann, Schneider-Kamp, & Falke, 2004)


• Implementing Decision Procedures for Equational Theories


• Knuth-Bendix Completion (Knuth & Bendix, 1983)
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Confluence

Informally, a TRS is confluent if the ordering of the rewrite steps do not matter.


Term rewriting is nondeterministic:


• A single rewrite rule might apply at different locations in a term


• Two rewrite rules may apply to the same term


Formally:


 t →*R u1 ∧ t →*R u2 ⟹ ∃w . u1 →*R w ∧ u2 →*R w
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s(z) + z s(z + z)

C = s( □ ) + z C = □



Confluence
s(z + z) + z

s(z) + z s(z + z)

s(z)

C = s( □ ) + z C = □

C = □ C = s( □ )



Termination

A TRS  is terminating if there do not exist infinite chains of the form:


 

(Σ, R)

t1 →R t2 →R …
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Consider a rule for “commutativity” 


We could then have:


(Σ, R)

t1 →R t2 →R …

r : x + y → y + x

s(z) + z
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A TRS  is terminating if there do not exist infinite chains of the form:


 

Consider a rule for “commutativity” 


We could then have:


(Σ, R)

t1 →R t2 →R …
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Why do we care?

• If a TRS for a given theory is terminating and confluent, then it defines a 
decision procedure for equality in that theory


• Simply obtain the normal form for each term and compare


• For more info see (Knuth & Bendix, 1983)


• Various techniques exist for proving termination of rewriting


• If you want to prove your program terminates, express it as a TRS and 
prove termination of the TRS
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Termination

A TRS  is terminating if there do not exist infinite chains of the form:
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Termination

A TRS  is terminating if there do not exist infinite chains of the form:





Is it possible to decide in general? 

No! You can implement a Turing machine as a TRS! 
In fact, a Turing machine can be implemented as a single rewrite rule.

(Σ, R)

t1 →R t2 →R …



Termination

A TRS  is terminating if there do not exist infinite chains of the form:





Is it possible to decide sometimes? 

(Σ, R)

t1 →R t2 →R …



A Simple Recipe for Proving Termination

1. Define a function 
S : T → ℕ
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S : T → ℕ

t, u t →R u ⟹ S(t) > S(u)



A Simple Recipe for Proving Termination

1. Define a function 


2. Ensure that forall  we have 


Why this works:


For any initial term , then  is an arbitrary integer . 


There are  numbers that are less than , so the longest path starting at  has at most  
steps.


S : T → ℕ

t, u t →R u ⟹ S(t) > S(u)

t S(t) n

n − 1 n t n



Termination

Consider the following rewrite rules:
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A General Recipe for Proving Termination

• Recall: The simple recipe worked by mapping elements of  to elements of 


• An infinite descent of  on  would correspond to an infinite descent of > 
on 


• Infinite descent of > on  is not allowed because > is well-founded on .


•

T ℕ

→R T
ℕ

ℕ ℕ



A General Recipe for Proving Termination

• Recall: The simple recipe worked by mapping elements of  to elements of 


• An infinite descent of  on  would correspond to an infinite descent of > 
on 


• Infinite descent of > on  is not allowed because > is well-founded on .


• Thus the general recipe for proving termination is:


• Show that an infinite computation would correspond to an infinite descent 
in a well-founded relation

T ℕ

→R T
ℕ

ℕ ℕ



Conclusion

• Term Rewriting Systems can serve as expressive yet simple model of 
computation


• TRS admit interesting properties such as confluence and termination


• In some cases it is possible to prove termination of a TRS
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