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Term Rewriting Systems

• What are Term Rewriting Systems? 

• A model for transforming terms via application of rewrite rules 

• Rules define structural transformations 

• Why are Term Rewriting Systems Useful? 

• Can serve as a nondeterministic model of computation


• Expressive, but with very simple syntax and semantics


• Admit interesting properties (today: Termination and Confluence)
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Term Rewriting Systems, Formally
From (Klop, 1990)

We consider terms built from an alphabet  such that:


•  is a set of function symbols, each associated with an arity 


• The arity of a function is the number of arguments it is supposed to have


• We denote the arity of a function  as 


•  is a countably infinite set of variables (typically denoted )

Σ = (F, V)

F

f α( f )

V x, x1, y, y1, …



Term Rewriting Systems, Formally

Terms over  are denoted as , where:


1. 


2. 


To make things look nice:


• If , we can write  as 


• If , we can write  as 

Σ T(Σ)

x ∈ V ⟹ x ∈ T(Σ)

f ∈ F ∧ α( f ) = n ∧ t1, …, tn ∈ T(Σ) ⟹ f(t1, …, tn) ∈ T(Σ)

α( f ) = 0 f() f

α( f ) = 2 f(t, u) t f u

From (Klop, 1990)
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Term Rewriting Systems, Informally

A rewrite rule  is a pair of terms , denoted  or simply 


A rewrite rule  defines a binary relation  on , informally:


•   if  “matches” some subterm  of  via a substitution 


•  is the result of replacing  in  with substitution  applied to 


r (t, u) r : t → u t → u

r : t → u →r T

t′￼ →r u′￼ t s t′￼ σ

u′￼ s t′￼ σ u′￼

From (Klop, 1990)
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Term Rewriting Systems, Formally

A rewrite rule  is a pair of terms , denoted  or simply 


A substitution  is a mapping  

•  denotes the replacement of each variable  with 


A context  is a term with a single “hole”, e.g.   or the trivial context 


•  represents the term obtained by filling the hole with , e.g  or  

A rewrite rule  defines a binary relation  where:


  for all contexts , substitutions 

r (t, u) r : t → u t → u

σ V → T

σ(t) v ∈ t σ(v)

C f(x, □ ) □

C[t] t f(x, t) t

r : t → u →r

C[σ(t)] →r C[σ(u)] C σ

From (Klop, 1990)
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Term Rewriting Systems, Finally

A Term Rewriting System is the pair  where:


•   is an alphabet, and 


•  is a set of rewrite rules over 


Typically, the rewrite rules denote axioms for some theory


A TRS defines a binary relation  on , such that:


•  iff u can be obtained from  by applying a rule from 

(Σ, R)

Σ

R T(Σ)

→R T(Σ)

t →R u t R

From (Klop, 1990)
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Reasoning Enabled by TRS

A relation of interest is , the reflexive transitive closure of 


Intuition:  iff  can be obtained from  by applying zero or more rewrite rules 
from 


A common application: compute the set of terms obtained via rewriting from , namely 
the set: 


Also of interest: obtaining the normal form of .


 Find a  such that 

→*R →R

t →*R u u t
R

t
{u ∈ T | t →*R u}

t

u t →*R u ∧ ¬(∃v . u →R v)
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r3 : T ∨ x → T
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r5 : not(T) → F
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Real-World Applications of Term Rewriting

• Automated Theorem Proving (Equality Saturation)


• Egg (Willsey et al, 2021)


• Proving Program Termination


• AProVe (Giesl, Thiemann, Schneider-Kamp, & Falke, 2004)


• Implementing Decision Procedures for Equational Theories


• Knuth-Bendix Completion (Knuth & Bendix, 1983)
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Confluence

Informally, a TRS is confluent if the ordering of the rewrite steps do not matter.


Term rewriting is nondeterministic:


• A single rewrite rule might apply at different locations in a term


• Two rewrite rules may apply to the same term


Formally:


 t →*R u1 ∧ t →*R u2 ⟹ ∃w . u1 →*R w ∧ u2 →*R w
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C = s( □ ) + z



Confluence
s(z + z) + z

s(z) + z s(z + z)

C = s( □ ) + z C = □



Confluence
s(z + z) + z

s(z) + z s(z + z)

s(z)

C = s( □ ) + z C = □

C = □ C = s( □ )



Termination

A TRS  is terminating if there do not exist infinite chains of the form:
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A TRS  is terminating if there do not exist infinite chains of the form:


 

Consider a rule for “commutativity” 


We could then have:
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t1 →R t2 →R …
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Why do we care?

• If a TRS for a given theory is terminating and confluent, then it defines a 
decision procedure for equality in that theory


• Simply obtain the normal form for each term and compare


• For more info see (Knuth & Bendix, 1983)


• Various techniques exist for proving termination of rewriting


• If you want to prove your program terminates, express it as a TRS and 
prove termination of the TRS
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Termination
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A TRS  is terminating if there do not exist infinite chains of the form:





Is it possible to decide in general? 

No! You can implement a Turing machine as a TRS! 
In fact, a Turing machine can be implemented as a single rewrite rule.

(Σ, R)

t1 →R t2 →R …



Termination

A TRS  is terminating if there do not exist infinite chains of the form:





Is it possible to decide sometimes? 

(Σ, R)

t1 →R t2 →R …



A Simple Recipe for Proving Termination

1. Define a function 
S : T → ℕ
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A Simple Recipe for Proving Termination

1. Define a function 


2. Ensure that forall  we have 


Why this works:


For any initial term , then  is an arbitrary integer . 


There are  numbers that are less than , so the longest path starting at  has at most  
steps.


S : T → ℕ

t, u t →R u ⟹ S(t) > S(u)

t S(t) n

n − 1 n t n



Termination

Consider the following rewrite rules:
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A General Recipe for Proving Termination

• Recall: The simple recipe worked by mapping elements of  to elements of 


• An infinite descent of  on  would correspond to an infinite descent of > 
on 


• Infinite descent of > on  is not allowed because > is well-founded on .


•

T ℕ

→R T
ℕ

ℕ ℕ



A General Recipe for Proving Termination

• Recall: The simple recipe worked by mapping elements of  to elements of 


• An infinite descent of  on  would correspond to an infinite descent of > 
on 


• Infinite descent of > on  is not allowed because > is well-founded on .


• Thus the general recipe for proving termination is:


• Show that an infinite computation would correspond to an infinite descent 
in a well-founded relation

T ℕ

→R T
ℕ

ℕ ℕ



Conclusion

• Term Rewriting Systems can serve as expressive yet simple model of 
computation


• TRS admit interesting properties such as confluence and termination


• In some cases it is possible to prove termination of a TRS
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