
Zack Grannan, CPSC 501

A Brief Tour of Term Rewriting

December 7th, 2021

Term Rewriting Systems

• What are Term Rewriting Systems?

• A model for transforming terms via application of rewrite rules

• Rules define structural transformations

• Why are Term Rewriting Systems Useful?

• Can serve as a nondeterministic model of computation

• Expressive, but with very simple syntax and semantics

• Admit interesting properties (today: Termination and Confluence)

Today

1. Introduce Term Rewriting Systems

2. Describe Properties of Term Rewriting Systems

1. Confluence

2. Termination

3. Prove Termination of Term Rewriting Systems

Today

1. Introduce Term Rewriting Systems

2. Describe Properties of Term Rewriting Systems

1. Confluence

2. Termination

3. Prove Termination of Term Rewriting Systems

Term Rewriting Systems, Formally
From (Klop, 1990)

We consider terms built from an alphabet such that:

• is a set of function symbols, each associated with an arity

• The arity of a function is the number of arguments it is supposed to have

• We denote the arity of a function as

• is a countably infinite set of variables (typically denoted)

Σ = (F, V)

F

f α(f)

V x, x1, y, y1, …

Term Rewriting Systems, Formally

Terms over are denoted as , where:

1.

2.

To make things look nice:

• If , we can write as

• If , we can write as

Σ T(Σ)

x ∈ V ⟹ x ∈ T(Σ)

f ∈ F ∧ α(f) = n ∧ t1, …, tn ∈ T(Σ) ⟹ f(t1, …, tn) ∈ T(Σ)

α(f) = 0 f() f

α(f) = 2 f(t, u) t f u

From (Klop, 1990)

Example: Addition and Peano Numbers

F = {z, s, + }

Example: Addition and Peano Numbers

F = {z, s, + }

z

Example: Addition and Peano Numbers

F = {z, s, + }

z

s(z)

Example: Addition and Peano Numbers

F = {z, s, + }

z

s(z)

s(s(z))

Example: Addition and Peano Numbers

F = {z, s, + }

z

s(z)

s(s(z))

. . .

Example: Addition and Peano Numbers

F = {z, s, + }

z

s(z)

s(s(z))

. . .

z + z

Example: Addition and Peano Numbers

F = {z, s, + }

z

s(z)

s(s(z))

. . .

z + z

z + s(z)

Example: Addition and Peano Numbers

F = {z, s, + }

z

s(z)

s(s(z))

. . .

z + z

z + s(z)

s(z) + s(z)

Example: Addition and Peano Numbers

F = {z, s, + }

z

s(z)

s(s(z))

. . .

z + z

z + s(z)

s(z) + s(z)

(z + z) + s(z)

Example: Addition and Peano Numbers

F = {z, s, + }

z

s(z)

s(s(z))

. . .

z + z

z + s(z)

s(z) + s(z)

(z + z) + s(z)

. . .

Term Rewriting Systems, Informally

A rewrite rule is a pair of terms , denoted or simply

A rewrite rule defines a binary relation on , informally:

• if “matches” some subterm of via a substitution

• is the result of replacing in with substitution applied to

r (t, u) r : t → u t → u

r : t → u →r T

t′ →r u′ t s t′ σ

u′ s t′ σ u′

From (Klop, 1990)

Term Rewriting Systems, Informally

A rewrite rule is a pair of terms , denoted or simply

A rewrite rule defines a binary relation on , informally:

• if “matches” some subterm of via a substitution

• is the result of replacing in with substitution applied to

Example:

• Rewrite Rule

r (t, u) r : t → u t → u

r : t → u →r T

t′ →r u′ t s t′ σ

u′ s t′ σ u′

r : x + z → x

From (Klop, 1990)

Term Rewriting Systems, Informally

A rewrite rule is a pair of terms , denoted or simply

A rewrite rule defines a binary relation on , informally:

• if “matches” some subterm of via a substitution

• is the result of replacing in with substitution applied to

Example:

• Rewrite Rule

• Application

r (t, u) r : t → u t → u

r : t → u →r T

t′ →r u′ t s t′ σ

u′ s t′ σ u′

r : x + z → x

(s(z) + z)+s(z)

From (Klop, 1990)

Term Rewriting Systems, Informally

A rewrite rule is a pair of terms , denoted or simply

A rewrite rule defines a binary relation on , informally:

• if “matches” some subterm of via a substitution

• is the result of replacing in with substitution applied to

Example:

• Rewrite Rule

• Application

r (t, u) r : t → u t → u

r : t → u →r T

t′ →r u′ t s t′ σ

u′ s t′ σ u′

r : x + z → x

(s(z) + z)+s(z)

From (Klop, 1990)

Term Rewriting Systems, Informally

A rewrite rule is a pair of terms , denoted or simply

A rewrite rule defines a binary relation on , informally:

• if “matches” some subterm of via a substitution

• is the result of replacing in with substitution applied to

Example:

• Rewrite Rule

• Application

r (t, u) r : t → u t → u

r : t → u →r T

t′ →r u′ t s t′ σ

u′ s t′ σ u′

r : x + z → x

(s(z) + z)+s(z) →r s(z)+s(z)

From (Klop, 1990)

Term Rewriting Systems, Formally

A rewrite rule is a pair of terms , denoted or simply

A substitution is a mapping

• denotes the replacement of each variable with

A context is a term with a single “hole”, e.g. or the trivial context

• represents the term obtained by filling the hole with , e.g or

A rewrite rule defines a binary relation where:

 for all contexts , substitutions

r (t, u) r : t → u t → u

σ V → T

σ(t) v ∈ t σ(v)

C f(x, □) □

C[t] t f(x, t) t

r : t → u →r

C[σ(t)] →r C[σ(u)] C σ

From (Klop, 1990)

Example
Klop

Rewriting:

s(z) + s(s(z))

Rules:

r1 : x + z → x

r2 : x + s(y) → s(x + y)

Example
Klop

Rewriting:

s(z) + s(s(z)) →r2

s(s(z) + s(z))

Rules:

r1 : x + z → x

r2 : x + s(y) → s(x + y)

σ = {x → s(z), y → s(z)}

C = □

Example
Klop

Rewriting:

s(z) + s(s(z)) →r2

s(s(z) + s(z)) →r2

s(s(s(z) + z)))

Rules:

r1 : x + z → x

r2 : x + s(y) → s(x + y)

σ = {x → s(z), y → z}

C = s(□)

Example
Klop

Rewriting:

s(z) + s(s(z)) →r2

s(s(z) + s(z)) →r2

s(s(s(z) + z)) →r1

s(s(s(z)))

Rules:

r1 : x + z → x

r2 : x + s(y) → s(x + y)

σ = {x → s(z)}

C = s(s(□))

Term Rewriting Systems, Finally

A Term Rewriting System is the pair where:

• is an alphabet, and

• is a set of rewrite rules over

Typically, the rewrite rules denote axioms for some theory

A TRS defines a binary relation on , such that:

• iff u can be obtained from by applying a rule from

(Σ, R)

Σ

R T(Σ)

→R T(Σ)

t →R u t R

From (Klop, 1990)

Reasoning Enabled by TRS

A relation of interest is , the reflexive transitive closure of

Intuition: iff can be obtained from by applying zero or more rewrite rules
from

A common application: compute the set of terms obtained via rewriting from , namely
the set:

→*R →R

t →*R u u t
R

t
{u ∈ T | t →*R u}

Reasoning Enabled by TRS

A relation of interest is , the reflexive transitive closure of

Intuition: iff can be obtained from by applying zero or more rewrite rules
from

A common application: compute the set of terms obtained via rewriting from , namely
the set:

Also of interest: obtaining the normal form of .

 Find a such that

→*R →R

t →*R u u t
R

t
{u ∈ T | t →*R u}

t

u t →*R u ∧ ¬(∃v . u →R v)

Example 2

r1 : T ∧ x → x

r2 : F ∧ x → F

r3 : T ∨ x → T

r4 : F ∨ x → x

r5 : not(T) → F

r6 : not(F) → T

(T ∨ F) ∧ not(F)

Example 2

r1 : T ∧ x → x

r2 : F ∧ x → F

r3 : T ∨ x → T

r4 : F ∨ x → x

r5 : not(T) → F

r6 : not(F) → T

(T ∨ F) ∧ not(F)

Example 2

r1 : T ∧ x → x

r2 : F ∧ x → F

r3 : T ∨ x → T

r4 : F ∨ x → x

r5 : not(T) → F

r6 : not(F) → T

T ∧ not(F) (T ∨ F) ∧ T

(T ∨ F) ∧ not(F)

Example 2

r1 : T ∧ x → x

r2 : F ∧ x → F

r3 : T ∨ x → T

r4 : F ∨ x → x

r5 : not(T) → F

r6 : not(F) → T

T ∧ not(F) (T ∨ F) ∧ T

(T ∨ F) ∧ not(F)

Example 2

r1 : T ∧ x → x

r2 : F ∧ x → F

r3 : T ∨ x → T

r4 : F ∨ x → x

r5 : not(T) → F

r6 : not(F) → T

T ∧ not(F) (T ∨ F) ∧ T

(T ∨ F) ∧ not(F)

T ∧ T

Example 2

r1 : T ∧ x → x

r2 : F ∧ x → F

r3 : T ∨ x → T

r4 : F ∨ x → x

r5 : not(T) → F

r6 : not(F) → T

T ∧ not(F) (T ∨ F) ∧ T

(T ∨ F) ∧ not(F)

T ∧ T

T

Real-World Applications of Term Rewriting

• Automated Theorem Proving (Equality Saturation)

• Egg (Willsey et al, 2021)

• Proving Program Termination

• AProVe (Giesl, Thiemann, Schneider-Kamp, & Falke, 2004)

• Implementing Decision Procedures for Equational Theories

• Knuth-Bendix Completion (Knuth & Bendix, 1983)

Today

1. Introduce Term Rewriting Systems

2. Describe Properties of Term Rewriting Systems

1. Confluence

2. Termination

3. Prove Termination of Term Rewriting Systems

Confluence

Informally, a TRS is confluent if the ordering of the rewrite steps do not matter.

Term rewriting is nondeterministic:

• A single rewrite rule might apply at different locations in a term

• Two rewrite rules may apply to the same term

Formally:

 t →*R u1 ∧ t →*R u2 ⟹ ∃w . u1 →*R w ∧ u2 →*R w

Confluence
s(z + z) + z

Confluence
s(z + z) + z

s(z) + z

C = s(□) + z

Confluence
s(z + z) + z

s(z) + z s(z + z)

C = s(□) + z C = □

Confluence
s(z + z) + z

s(z) + z s(z + z)

s(z)

C = s(□) + z C = □

C = □ C = s(□)

Termination

A TRS is terminating if there do not exist infinite chains of the form:

(Σ, R)

t1 →R t2 →R …

Termination

A TRS is terminating if there do not exist infinite chains of the form:

Consider a rule for “commutativity”

We could then have:

(Σ, R)

t1 →R t2 →R …

r : x + y → y + x

s(z) + z

Termination

A TRS is terminating if there do not exist infinite chains of the form:

Consider a rule for “commutativity”

We could then have:

(Σ, R)

t1 →R t2 →R …

r : x + y → y + x

s(z) + z →r z + s(z)

Termination

A TRS is terminating if there do not exist infinite chains of the form:

Consider a rule for “commutativity”

We could then have:

(Σ, R)

t1 →R t2 →R …

r : x + y → y + x

s(z) + z →r z + s(z) →r s(z) + z

Termination

A TRS is terminating if there do not exist infinite chains of the form:

Consider a rule for “commutativity”

We could then have:

(Σ, R)

t1 →R t2 →R …

r : x + y → y + x

s(z) + z →r z + s(z) →r s(z) + z →r …

Why do we care?

• If a TRS for a given theory is terminating and confluent, then it defines a
decision procedure for equality in that theory

• Simply obtain the normal form for each term and compare

• For more info see (Knuth & Bendix, 1983)

• Various techniques exist for proving termination of rewriting

• If you want to prove your program terminates, express it as a TRS and
prove termination of the TRS

Today

1. Introduce Term Rewriting Systems

2. Describe Properties of Term Rewriting Systems

1. Confluence

2. Termination

3. Prove Termination of Term Rewriting Systems

Termination

A TRS is terminating if there do not exist infinite chains of the form:

Is it possible to decide in general?

(Σ, R)

t1 →R t2 →R …

Termination

A TRS is terminating if there do not exist infinite chains of the form:

Is it possible to decide in general?

No! You can implement a Turing machine as a TRS!
In fact, a Turing machine can be implemented as a single rewrite rule.

(Σ, R)

t1 →R t2 →R …

Termination

A TRS is terminating if there do not exist infinite chains of the form:

Is it possible to decide sometimes?

(Σ, R)

t1 →R t2 →R …

A Simple Recipe for Proving Termination

1. Define a function
S : T → ℕ

A Simple Recipe for Proving Termination

1. Define a function

2. Ensure that forall we have

S : T → ℕ

t, u t →R u ⟹ S(t) > S(u)

A Simple Recipe for Proving Termination

1. Define a function

2. Ensure that forall we have

Why this works:

For any initial term , then is an arbitrary integer .

There are numbers that are less than , so the longest path starting at has at most
steps.

S : T → ℕ

t, u t →R u ⟹ S(t) > S(u)

t S(t) n

n − 1 n t n

Termination

Consider the following rewrite rules:

r1 : T ∧ x → x

r2 : F ∧ x → F

r3 : T ∨ x → T

r4 : F ∨ x → x

r5 : not(T) → F

r6 : not(F) → T

Termination

Consider the following rewrite rules:

r1 : T ∧ x → x

r2 : F ∧ x → F

r3 : T ∨ x → T

r4 : F ∨ x → x

r5 : not(T) → F

r6 : not(F) → T

Let denote the number of symbols in the term.

For each rule , we require

S(t)

ri t →ri
u ⟹ S(t) > S(u)

S(t) > S(t) − 2

S(t) > S(t) − S(σ(x)) − 1

S(t) > S(t) − S(σ(x)) − 1

S(t) > S(t) − 2

S(t) > S(t) − 1

S(t) > S(t) − 1

Termination

Consider the following rewrite rules:

r1 : T ∧ x → x

r2 : F ∧ x → F

r3 : T ∨ x → T

r4 : F ∨ x → x

r5 : not(T) → F

r6 : not(F) → T

Let denote the number of symbols in the term.

For each rule , we require

S(t)

ri t →ri
u ⟹ S(t) > S(u)

S(t) > S(t) − 2

S(t) > S(t) − S(σ(x)) − 1

S(t) > S(t) − S(σ(x)) − 1

S(t) > S(t) − 2

S(t) > S(t) − 1

S(t) > S(t) − 1

A General Recipe for Proving Termination

• Recall: The simple recipe worked by mapping elements of to elements of

• An infinite descent of on would correspond to an infinite descent of >
on

• Infinite descent of > on is not allowed because > is well-founded on .

•

T ℕ

→R T
ℕ

ℕ ℕ

A General Recipe for Proving Termination

• Recall: The simple recipe worked by mapping elements of to elements of

• An infinite descent of on would correspond to an infinite descent of >
on

• Infinite descent of > on is not allowed because > is well-founded on .

• Thus the general recipe for proving termination is:

• Show that an infinite computation would correspond to an infinite descent
in a well-founded relation

T ℕ

→R T
ℕ

ℕ ℕ

Conclusion

• Term Rewriting Systems can serve as expressive yet simple model of
computation

• TRS admit interesting properties such as confluence and termination

• In some cases it is possible to prove termination of a TRS

Bibliography

Giesl, J., et al. (2004). Automated termination proofs with AProVE. International
Conference on Rewriting Techniques and Applications, Springer.

	

Klop, J. W. and J. Klop (1990). Term rewriting systems, Centrum voor Wiskunde
en Informatica.

	

Knuth, D. E. and P. B. Bendix (1983). Simple word problems in universal
algebras. Automation of Reasoning, Springer: 342-376.

	

Willsey, M., et al. (2021). "Egg: Fast and extensible equality saturation."
Proceedings of the ACM on Programming Languages (POPL): 1-29.

