Introduction to
Context Free
Grammar

CPSC 501 Presentation
Jerry Wang

What we have learnt so far...
Classes of Formal Grammars

« Chomsky Hierarchy: 4 types of grammars
* Type O: Turing-recognizable Languages - Turing Machine
* Type 1: Context-sensitive Languages — Linear-Bounded Automaton
* Type 2: Context-free Languages — Pushdown Automaton

* Type 3: Regular Languages - Finite State Automaton

« Asimple language: L = {0"1" | n > 0}
* Not regular but Turing-recognizable
» Also, context-free!

recursively enumerable

context-sensitive

context-free

Context Free Grammar
Today's Outline

 The Basics
« Syntax, Formal Definition, Derivations

 Parsing Part 1
* A quick look at the Pushdown Automaton
« CYK Algorithm: Can a string be generated from this grammar?

 Parsing Part 2
e Top-down Parsing
* Bottom-up Parsing

« Summary

The Basics
First Glance

 An example context free grammar:
« S - 051

e S > €

The Basics
Grammar Components

 An example context free grammar:
« S > 051

e S > €

» Contains a collection of production rules
 Also called substitution rules or rewrite rules.

The Basics
Grammar Components

 An example context free grammar:
« §—> 051

S —>oe¢€

« Each productionrule (V —» w) contains...
* A symbol called variable or non-terminals
* Aright arrow
A string that contains other variables and terminals

The Basics
Grammar Components

 An example context free grammar:
« S - 051

e S > €

« Each productionrule (V —» w) contains...
« A symbol called variable or non-terminals
* Aright arrow
A string that contains other variables and terminals

The Basics
Grammar Components

 An example context free grammar:
¢S > 051

e S > €

« Each productionrule (V —» w) contains...
« A symbol called variable or non-terminals
* Aright arrow
A string that contains other variables and terminals

The Basics
Grammar Components

 An example context free grammar:
« S - 051

e S > €

« Each productionrule (V - w) defines...

 How to replace a variable V with a string w regardless of the current context.
* Do this repeatedly until there is no variable left.
* Theresult is a string over all terminals.

The Basics
Grammar Components

 An example context free grammar:
e §$ - 051
e S—e€

* One more thing: The start variable

* Defines the starting point of a sequence of substitutions.
« Usually, it is the variable of the very first production rule.

The Basics
Formal Definition

 Components: The 4-tuple (V,X,R,S)
« V' : Afinite set of variables
« 2 : Afinite set of terminals that is disjoint from VV
* R : Afinite set of production rules
* S: The start variable (§ € V)

The Basics
Formal Definition - Example

 Components: The 4-tuple (V,X,R,S)
« V' : Afinite set of variables
« 2 : Afinite set of terminals that is disjoint from VV
* R : Afinite set of production rules
* S: The start variable (§ € V)

 An examplegrammar:V = {§};X = {0, 1, €}; Sqtart =

e § - 051 The empty
OR: § - 051 |¢€ string

e S > €

The Basics
Derivation

* Generate a string from the start variable
« Step 1: Write down the start variable.
« Step 2: Select a variable on the paper.
« Step 3: Find the rule that has the selected variable on the left-hand side.
» Step 4: Replace the selected variable with the right-hand side of that rule.
« Step 5: Repeat Steps 2 — 5 until there is no variable left on the paper.

I The Basics
Derivation — Example 1

* Generate a string from the start variable
« Step 1: Write down the start variable.
» Step 2: Select a variable on the paper.
» Step 3: Find the rule that has the selected variable on the left-hand side.
» Step 4: Replace the selected variable with the right-hand side of that rule.
o Step 5: Repeat Steps 2 — 5 until there is no variable left on the paper.
« Grammar: S — 051 | €
 Derivation: S

I The Basics
Derivation — Example 1

* Generate a string from the start variable
» Step 1: Write down the start variable.
« Step 2: Select a variable on the paper.
« Step 3: Find the rule that has the selected variable on the left-hand side.
» Step 4: Replace the selected variable with the right-hand side of that rule.
o Step 5: Repeat Steps 2 — 5 until there is no variable left on the paper.
« Grammar: S — 051 | €
 Derivation: S = 051

>

I The Basics
Derivation — Example 1

* Generate a string from the start variable
» Step 1: Write down the start variable.
o Step 2: Select a variable on the paper.
» Step 3: Find the rule that has the selected variable on the left-hand side.
» Step 4: Replace the selected variable with the right-hand side of that rule.
« Step 5: Repeat Steps 2 — 5 until there is no variable left on the paper.
« Grammar: S — 051 | €
* Derivation: S = 051 = 00511 = 00€11 = 0011

The Basics
Derivation — Example 2

* Generate a string from the start variable
« Grammar:S — aSa | bSbh | €
« Derivation:

S=>aSa

= aaSaa

= aabSbaa
= aabebaa
= aabbaa

* PALINDROMEq

The Basics
Derivation

* Context Free GrammarG = (V,X,R,S)

« I/ : Afinite set of variables
« 2 : Afinite set of terminals that is disjoint from VV
* R : Afinite set of production rules

e S:The start variable (S € V) @

« Context Free Language L(G) ={w € X" | S =" w}
» The set of all strings derived from the start variable.

The Basics
Derivation — Potential Problem?

* Generate a string from the start variable
» Step 1: Write down the start variable.
« Step 2: Select a variable on the paper.
» Step 3: Find the rule that has the selected variable on the left-hand side.
» Step 4: Replace the selected variable with the right-hand side of that rule.
o Step 5: Repeat Steps 2 — 5 until there is no variable left on the paper.

 What if there are multiple variables on the paper?
* Which one should be replaced next?

The Basics
Derivation — Leftmost versus Rightmost

* Generate a string from the start variable

» Step 1: Write down the start variable.
« Step 2: Select a variable on the paper.

» Leftmost Derivation: Always replace the leftmost variable in each step.
* Rightmost Derivation: Always replace the rightmost variable in each step.

» Step 3: Find the rule that has the selected variable on the left-hand side.
» Step 4: Replace the selected variable with the right-hand side of that rule.
o Step 5: Repeat Steps 2 — 5 until there is no variable left on the paper.

The Basics
Visualize Derivation

« An example problematic grammar
e E>FE+4+E|EXE]|n
« where E stands for Expression and n is any integer literal

* Derive the string1 + 2 X 3 fromE

The Basics
Visualize Derivation —
Leftmost

eE>FE+4+E|EXE]|n
o String: 1+ 2 X% 3

» Two leftmost derivations
« Also, two meanings ®
« 14+ (2x%x3)
c (1+2)x3

The Basics
Ambiguous Grammar

» A context free grammar is
ambiguous if a derived string
has more than one distinct
leftmost derivation.

e 1+2%X3=90r7?

* The compiler may evaluate the
above expression to 9.

The Basics
Ambiguous Grammar

« An example problematic grammar ®
e ES5E+4+E|EXE|n

* Fixed grammar without ambiguity ©
« ESE4T|T
e T->TXn|n

* 1+ 2 X 3 has only one leftmost derivation now.

Parsing Part 1
The Fundamental Idea

 Pushdown Automaton (PDA)
 Finite State Automaton + A stack with unlimited amount of memory.
* The machine can also push/pop a symbol onto/from the stack.
* A set of input symbols + A set of stack symbols.

* Recognize L = {0"1" | n = 0}
* Push "0" onto the stack when the machine reads a “0” from the tape.
e Pop “O" from the stack when the machine reads a “1” from the tape.
* Accept the input if the stack is empty on reading an “e” from the tape.

Parsing Part 1
CYK Algorithm

 Originally published by ltiroo Sakai in 1961.

« Sakai, Itiroo (1962). Syntax in universal translation.
» 1961 International Conference on Machine Translation of Languages and

Applied Language Analysis
 But named after its rediscoverers:
» John Cocke
« Danial Younger
 Tadao Kasami

Parsing Part 1
CYK Algorithm

« Exploit the idea of dynamic programming
» Use the solution to a smaller problem to solve a bigger problem.

* The standard version has an important assumption.
e The grammar must be rendered into Chomsky Normal Form (CNF).
* CNF defines constraints on each production rule.

* There are variants that relax some of the constraints.

 "To CNF or not to CNF? An Efficient Yet Presentable Version of the CYK
Algorithm” by Lange, Martin; Leif3, Hans in 2009.

Parsing Part 1
Chomsky Normal Form (CNF)

* Every production rule must be of the form
 A—- BC
 OR

e A->a

* Notes
« A, B, C are any variables, and a is any terminal.
* B, C must not be the start variable.
« § - eisallowed, if S is the start variable.

Parsing Part 1
Chomsky Normal Form (CNF)

* Every production rule must be of the form
 A—- BC
 OR

e A->a

* Observations
A variable can be directly replaced by a terminal.
* Otherwise, a variable is separated into two parts.

» Each part is replaced by some other string.

Parsing Part 1
Chomsky Normal Form (CNF)

* [Sip] Every context free grammar can be transformed into CNF.

* The transformation is done in 5 steps:
« START: Eliminate the start variable from the right-hand sides.
« TERM: Eliminate right-hand sides with both variables and terminals.
 BIN: Eliminate right-hand sides with more than 2 variables.
* DEL: Eliminate all e-rules (A — €) not involving the start variable.
« UNIT: Eliminate all unit rules (A — B).

Parsing Part 1 S~ aSa|bsh|e

Chomsky Normal Form (CNF) s’

S > aSa|bSh|e€

* The transformation is done in 5 steps:

« START: Eliminate the start variable from the right-hand sides.
* Introduce a new start variable S’ that derives the original start variable S.

 TERM: Eliminate right-hand sides with both variables and terminals.
 BIN: Eliminate right-hand sides with more than 2 variables.

 DEL: Eliminate all e-rules (A — €) not involving the start variable.
 UNIT: Eliminate all unit rules (A — B).

S'"> S
S > aSa|bShb|e

Parsing Part 1 B —
Chomsky Normal Form (CNF) § 2 ASA|BSB | ¢

* The transformation is done in 5 steps:

 START: Eliminate the start variable from the right-hand sides.
 TERM: Eliminate right-hand sides with both variables and terminals.

* Introduce a new variable X; for each terminal x; on the right-hand side.

* Introduce a new production rule X; — x;.
 BIN: Eliminate right-hand sides with more than 2 variables.

e DEL: Eliminate all e-rules (A — €) not involving the start variable.
 UNIT: Eliminate all unit rules (A — B).

S'"> S
S —> ASA|BSB | €

Parsing Part 1 Ay
Chomsky Normal Form (CNF) By le
X —> SA;Y - SB
A->aB-b

* The transformation is done in 5 steps:
 START: Eliminate the start variable from the right-hand sides.
 TERM: Eliminate right-hand sides with both variables and terminals.

 BIN: Eliminate right-hand sides with more than 2 variables.
e A- X1X,..X,;Let Head = Xq; Let Tail = X, X5 ... X,;:
» Recursively replace the tail sequence of variables with a new variable until [Tail| = 2.

e DEL: Eliminate all e-rules (A — €) not involving the start variable.
 UNIT: Eliminate all unit rules (A — B).

S'"> S
S—>AX|BY | €
X - SA;Y - SB

Parsing Part 1 i
Chomsky Normal Form (CNF) ~ ——————————

S'">S|e

S —>AX |BY
X—->SA|A;Y ->SB|B
A->aB-b

* The transformation is done in 5 steps:
 START: Eliminate the start variable from the right-hand sides.
 TERM: Eliminate right-hand sides with both variables and terminals.
 BIN: Eliminate right-hand sides with more than 2 variables.

« DEL: Eliminate all e-rules (4 — €) not involving the start variable.
* For each occurrence of an A on the right-hand side:

* Add a new rule with that occurrence deleted.

 UNIT: Eliminate all unit rules (A — B).

S'"—>8|e
S > AX | BY
X—->SA|A;Y > SB|B

Parsing Part 1 X sAl4b
Chomsky Normal Form (CNF) ~ ———————————

S'" > AX | BY | €

S > AX | BY
X->SA|la;Y > SB|b
A-aB—-b

* The transformation is done in 5 steps:
 START: Eliminate the start variable from the right-hand sides.
 TERM: Eliminate right-hand sides with both variables and terminals.
 BIN: Eliminate right-hand sides with more than 2 variables.

 DEL: Eliminate all e-rules (A — €) not involving the start variable.
* UNIT: Eliminate all unit rules (4 — B).

« Whenever B — v appears, add arule 4 — v.

I Parsing Part 1
Chomsky Normal Form (CNF)

* The transformation is done in 5 steps:
« START: Eliminate the start variable from the right-hand sides.
« TERM: Eliminate right-hand sides with both variables and terminals.
 BIN: Eliminate right-hand sides with more than 2 variables.
* DEL: Eliminate all e-rules (4 — €) notinvolving the start variable. g ger
« UNIT: Eliminate all unit rules (4 - B). Matters

* More details and time analysis are covered in the textbook and the paper.
» "To CNF or not to CNF? An Efficient Yet Presentable Version of the CYK Algorithm”

Parsing Part 1
CYK Algorithm

* Given a CFG G in CNF and an input string w of length n.

* Exploit the properties of CNF: A - BCorA — a; S — € is allowed.

« Supposed that the input string can be generated from G...
 If astringw is ¢, then there existsarule S — €.
* If a string w of length 1 can be derived from a variable A,
* thenthere existsarule A - w.
« If a string w of length > 2 can be derived from a variable A...

* then there exists arule A — BC such that
* B derives the substring we,.,,, (< A smaller problem)
» (derives the substring wy ., (€< A smaller problem)
* where w = Wont + Wpqck (String concatenation)

I Parsing Part 1
CYK Algorithm

* Exploit the properties of CNF: A - BCorA — a; S — €is allowed.

* |f a string w of length > 2 can be derived from a variable A...
« Then there exists arule A —» BC such that
* B derives the substring wy,.,,,; (€ A smaller problem)
» C derives the substring w, ., (€ A smaller problem)
* Where w = Wepront + Wpqck (String concatenation)
* Where should we split w into wg,.,,; and wy,g.?
 We need to try every possible partitions.

* Good! We reduce a big problem into two smaller problems!
* Top-down Approach: We could recursively solve the problem now.

I Parsing Part 1
CYK Algorithm

 Bottom-up Approach:

* |f we know which variables generate all substrings of the input up to length k,
can we know which variable generates a particular substring of length k + 1?
YES!

» Split a substring of length k + 1 into two non-empty pieces (there are k possible ways).
* Foreachrule of form A — BC:
» Check whether B can generate the first piece of lengthp < k.

» Check whether C can generate the second piece of lengthk + 1 — p < k.
 If so, then A can generate this substring of length k + 1.

* Now we just check every possible substring of length k + 1.

Parsing Part 1
CYK Algorithm

 Bottom-up Approach:

* [f we know which variables generate all substrings of the input up to
length k, we know which variable generates a particular substring of
length k 4+ 17

* By induction, we know which variables generate the substring of length n.
» Substring of length n is just the input string.
* If those variables contain the start variable S, thenw € L(G).

I Parsing Part 1
CYK Algorithm

e Input =< Goyr = (V,%,R,S),w = 0q0, ...0,>;, Output = accept or reject.
 Table =n X n cells
* where Tableli, j] stores a set of variables that can generate the substring g;0;,1 ... 0; (i < j).

* If wisempty, if S = € exists then accept else reject.

e Fori = 1..n:
* Foreach variable A: If A — o; exists, then insert A into Table[i, i].

e Forl=2..n:
e Fori=1..(N—-1+1):
e letj=i+l—-1,Fork=i..(j —1):
* Foreachrule A = BC:If Table[i, k] contains B and Table[k + 1, j] contains C, theninsert A into Table[i, j].

 If Table|1,n] contains S then accept else reject.

Parsing Part 2
Practical Parsers

* The standard CYK algorithm only tells us whether an input string
can be generated.

» Sometimes, we also want to know how a string is generated.

* e.g., A compiler needs to convert the source code to an abstract syntax
tree so that it can perform type checking and produce the assembly code.

* i.e., Search for the derivation from S to the input string w.

Parsing Part 2
Parser Types

 Top-down Parsers

 Build a derivation from the start variable to the input string.

« At each step, the parser selects a variable A and replaces the variable
with the right-hand side of therule A — v.

 Bottom-up Parsers
 Build a derivation from the input string back to the start variable.

« At each step, the parser identifies a substring v that matches the right-
hand side of arule A — v and replaces the substring with the variable.

I Parsing Part 2
Top-down Parsers

* Begin with the start variable...

» At each step, the parser selects a variable and replaces the variable with the right-hand side of the rule.
« Keep expanding the parse tree until the leaves match the input string.

« Example with input string bacab:
« Derivation:S > d; >d, = - = d,—1 = d,, = bacab
e Grammar:S > bACb; A—->aA|c; C—-cC|a
 d; = baACb, so d;,, can be one of:
* baaACb (A - al)
* bacCbhb (A - ¢)
* baAcCb (C - cC)
 baAab (C - a)

I Parsing Part 2
Parser Types

 Top-down Parsers

» Recursive descent parsers (with backtracking)

* Predictive parsers: LL (k) parsers (without backtracking)
» Read the input Left to right; Build Leftmost derivation; Peek at most k symbols.

 Bottom-up Parsers

 Shift-reduce parsers (without backtracking)
* LR(k) parsers (without backtracking)

» Read the input Left to right; Build Rightmost derivation in reverse; Peek at most k symbols.

I Parsing Part 2
LL(1) Parser — A Quick Glance

* Peek the next symbol is sufficient to choose the correct production rule
e S—>aP|bQ
» Supposed that the parser is parsing the variable S.

* |f the next symbolis a, the parser consumes a and starts to parse the variable P.
* |f the next symbolis b, the parser consumes b and starts to parse the variable Q.

» Constraints on the context free grammar

* The constrained grammar is known as LL(1) grammar.

* The first symbol of all strings derived from a variable must be unique.
e S>aP|bQ|aR

I Parsing Part 2
LL(1) Parser — Constraints

» Constraints on the context free grammar

* The constrained grammar is known as LL(1) grammar.

* The first symbol of all strings derived from a variable must be unique.
* Problematic ®:
e S>aP|bQ|aR
* Fixed ©:
« S—aX|bQ
- X->Q|R
*Q—-clq
* Rod|r

I Parsing Part 2
LL(1) Parser — Constraints

» Constraints on the context free grammar

* The constrained grammar is known as LL(1) grammar.
* The first symbol of all strings derived from a variable must be unique.

* Left recursionis not allowed.
c E->E+T|T
e T>TXn|n

 When the parser is parsing E ...
* |t needs to parse E, then +, and finally T.

* ltneedstoparsekF, ..
» Stack overflow.

I Parsing Part 2
LL(1) Parser — Constraints

» Constraints on the context free grammar

* The constrained grammar is known as LL(1) grammar.
* The first symbol of all strings derived from a variable must be unique.

* Left recursion is not allowed.
c E->E+T|T
e T->TXn|n
* Left recursions removed:
e E->TZ;Z > +E|€
* T->nR;R->XT|e€

I Parsing Part 2
LL(1) Parser — JavaCC Example

« Generate a parser for the grammar:
*E>T+E|T—E|T
*T->nXT|n
c E->T((+|-)T) =
« T —> P (XP)=

e Pon

I Context Free Grammar
Summary

* The Basics
e Syntax:4 - w
* Formal Definition: ¢ = (V,X,R,S)
* Derivation: S > w; =2 w, 2 -2 w,;S 2" w,
» Leftmost Derivation versus Rightmost Derivation

* Ambiguous Grammar

* Parse Tree: Visual Derivations

I Context Free Grammar
Summary

 Parsing
* Pushdown Automaton: Finite State Automaton + Stack
* Chomsky Normal Form: Constraints and Transformations
» Cocke-Younger-Kasami Algorithm (CYK Algorithm)

* Top-Down Parsing versus Bottom-Up Parsing

» Recursive Descent Parsers
* LL(k) Parsers
* LL(1) Parsers: Constraints and Solutions

Context Free Grammar
Questions?

Thanks for joining today
©

Any Questions?

Context Free Grammar
References & Notes

* "Three models for the description of language”
 Noam Chomsky (1956), IRE Transactions on Information Theory.

* "To CNF or not to CNF? An Efficient Yet Presentable Version of the

CYK Algorithm"
* Martin Lange, Hans Leif3 (2009), Informatica Didactica.

 “Introduction to the Theory of Computation”
» Section 2.1 and Section 2.2: Basics of CFG and PDA.
» Chapter 7: Section 7.2 Theorem 7.16: The CYK Algorithm.

Context Free Grammar
References & Notes

* “"Modern Compiler Implementation in Java”
» Second Edition, Andrew Appel, 2002

« "“"Comparison of parser generators — Deterministic CFG"

 https://en.wikipedia.org/wiki/{Comparison_of_parser_generators#Deterministic_
context-free_languages

o "JavaCC Parser Generator”
 https://javacc.github.io/javacc/

https://en.wikipedia.org/wiki/Comparison_of_parser_generators
https://javacc.github.io/javacc/

