
Introduction to
Context Free
Grammar
CPSC 501 Presentation

Jerry Wang

What we have learnt so far…
Classes of Formal Grammars

• Chomsky Hierarchy1: 4 types of grammars
• Type 0: Turing-recognizable Languages - Turing Machine
• Type 1: Context-sensitive Languages – Linear-Bounded Automaton
• Type 2: Context-free Languages – Pushdown Automaton
• Type 3: Regular Languages – Finite State Automaton

• A simple language: 𝐋 = 𝟎𝐧𝟏𝐧 𝐧 ≥ 𝟎}
• Not regular but Turing-recognizable
• Also, context-free!

1 Noam Chomsky (1956). "Three models for the description of language". IRE Transactions on Information Theory.

Context Free Grammar
Today’s Outline

• The Basics
• Syntax, Formal Definition, Derivations

• Parsing Part 1
• A quick look at the Pushdown Automaton
• CYK Algorithm: Can a string be generated from this grammar?

• Parsing Part 2
• Top-down Parsing
• Bottom-up Parsing

• Summary

The Basics
First Glance

• An example context free grammar:
• 𝑆 → 0𝑆1
• 𝑆 → 𝜖

The Basics
Grammar Components

• An example context free grammar:
• 𝑆 → 0𝑆1
• 𝑆 → 𝜖

• Contains a collection of production rules
• Also called substitution rules or rewrite rules.

The Basics
Grammar Components

• An example context free grammar:
• 𝑺 → 0𝑆1
• 𝑺 → 𝜖

• Each production rule (𝑽 → 𝒘) contains…
• A symbol called variable or non-terminals
• A right arrow
• A string that contains other variables and terminals

The Basics
Grammar Components

• An example context free grammar:
• 𝑆 → 0𝑆1
• 𝑆 → 𝜖

• Each production rule (𝑽 → 𝒘) contains…
• A symbol called variable or non-terminals
• A right arrow
• A string that contains other variables and terminals

The Basics
Grammar Components

• An example context free grammar:
• 𝑆 → 𝟎𝑺𝟏
• 𝑆 → 𝝐

• Each production rule (𝑽 → 𝒘) contains…
• A symbol called variable or non-terminals
• A right arrow
• A string that contains other variables and terminals

The Basics
Grammar Components

• An example context free grammar:
• 𝑆 → 0𝑆1
• 𝑆 → 𝜖

• Each production rule (𝑽 → 𝒘) defines…
• How to replace a variable 𝑉 with a string 𝑤 regardless of the current context.
• Do this repeatedly until there is no variable left.
• The result is a string over all terminals.

The Basics
Grammar Components

• An example context free grammar:
• 𝑺 → 0𝑆1
• 𝑆 → 𝜖

• One more thing: The start variable
• Defines the starting point of a sequence of substitutions.
• Usually, it is the variable of the very first production rule.

The Basics
Formal Definition

• Components: The 4-tuple (𝑽, 𝚺, 𝐑, 𝐒)
• 𝑉 : A finite set of variables
• Σ : A finite set of terminals that is disjoint from 𝑉
• 𝑅 : A finite set of production rules
• 𝑆 : The start variable (𝑆 ∈ 𝑉)

The Basics
Formal Definition - Example

• Components: The 4-tuple (𝑽, 𝚺, 𝐑, 𝐒)
• 𝑉 : A finite set of variables
• Σ : A finite set of terminals that is disjoint from 𝑉
• 𝑅 : A finite set of production rules
• 𝑆 : The start variable (𝑆 ∈ 𝑉)

• An example grammar: 𝑽 = 𝑺 ; 𝚺 = 𝟎, 𝟏, 𝝐 ; 𝐒𝐬𝐭𝐚𝐫𝐭 = 𝐒
• 𝑆 → 0𝑆1
• 𝑆 → 𝜖 OR: 𝑺 → 𝟎𝑺𝟏 | 𝝐

The empty
string

The Basics
Derivation

• Generate a string from the start variable
• Step 1: Write down the start variable.
• Step 2: Select a variable on the paper.
• Step 3: Find the rule that has the selected variable on the left-hand side.
• Step 4: Replace the selected variable with the right-hand side of that rule.
• Step 5: Repeat Steps 2 – 5 until there is no variable left on the paper.

The Basics
Derivation – Example 1

• Generate a string from the start variable
• Step 1: Write down the start variable.
• Step 2: Select a variable on the paper.
• Step 3: Find the rule that has the selected variable on the left-hand side.
• Step 4: Replace the selected variable with the right-hand side of that rule.
• Step 5: Repeat Steps 2 – 5 until there is no variable left on the paper.
• Grammar: 𝑆 → 0𝑆1 | 𝜖
• Derivation: 𝑆

The Basics
Derivation – Example 1

• Generate a string from the start variable
• Step 1: Write down the start variable.
• Step 2: Select a variable on the paper.
• Step 3: Find the rule that has the selected variable on the left-hand side.
• Step 4: Replace the selected variable with the right-hand side of that rule.
• Step 5: Repeat Steps 2 – 5 until there is no variable left on the paper.
• Grammar: 𝑆 → 0𝑆1 | 𝜖
• Derivation: 𝑆 ⇒ 0𝑆1

yields

The Basics
Derivation – Example 1

• Generate a string from the start variable
• Step 1: Write down the start variable.
• Step 2: Select a variable on the paper.
• Step 3: Find the rule that has the selected variable on the left-hand side.
• Step 4: Replace the selected variable with the right-hand side of that rule.
• Step 5: Repeat Steps 2 – 5 until there is no variable left on the paper.
• Grammar: 𝑆 → 0𝑆1 | 𝜖
• Derivation: 𝑆 ⇒ 0𝑆1 ⇒ 00𝑺11 ⇒ 00𝝐11 = 0011

The Basics
Derivation – Example 2

• Generate a string from the start variable
• Grammar: 𝑆 → 𝑎𝑆𝑎 𝑏𝑆𝑏 𝜖
• Derivation:

𝑺 ⇒ 𝒂𝑺𝒂
⇒ 𝒂𝒂𝑺𝒂𝒂
⇒ 𝒂𝒂𝒃𝑺𝒃𝒂𝒂
⇒ 𝒂𝒂𝒃𝝐𝒃𝒂𝒂
= 𝒂𝒂𝒃𝒃𝒂𝒂

• 𝑃𝐴𝐿𝐼𝑁𝐷𝑅𝑂𝑀𝐸{),+}

The Basics
Derivation

• Context Free Grammar G = (𝑽, 𝚺, 𝐑, 𝐒)
• 𝑉 : A finite set of variables
• Σ : A finite set of terminals that is disjoint from 𝑉
• 𝑅 : A finite set of production rules
• 𝑆 : The start variable (𝑆 ∈ 𝑉)

• Context Free Language 𝑳 𝑮 = 𝒘 ∈ 𝚺∗ 𝑺 ⇒∗ 𝒘}
• The set of all strings derived from the start variable.

derives

The Basics
Derivation – Potential Problem?

• Generate a string from the start variable
• Step 1: Write down the start variable.
• Step 2: Select a variable on the paper.
• Step 3: Find the rule that has the selected variable on the left-hand side.
• Step 4: Replace the selected variable with the right-hand side of that rule.
• Step 5: Repeat Steps 2 – 5 until there is no variable left on the paper.

• What if there are multiple variables on the paper?
• Which one should be replaced next?

The Basics
Derivation – Leftmost versus Rightmost

• Generate a string from the start variable
• Step 1: Write down the start variable.
• Step 2: Select a variable on the paper.

• Leftmost Derivation: Always replace the leftmost variable in each step.
• Rightmost Derivation: Always replace the rightmost variable in each step.

• Step 3: Find the rule that has the selected variable on the left-hand side.
• Step 4: Replace the selected variable with the right-hand side of that rule.
• Step 5: Repeat Steps 2 – 5 until there is no variable left on the paper.

The Basics
Visualize Derivation

• An example problematic grammar
• 𝐸 → 𝐸 + 𝐸 𝐸 × 𝐸 𝑛
• where 𝐸 stands for Expression and 𝑛 is any integer literal

• Derive the string 𝟏 + 𝟐 × 𝟑 from 𝑬

The Basics
Visualize Derivation –
Leftmost

• 𝐸 → 𝐸 + 𝐸 𝐸 × 𝐸 𝑛
• String: 1 + 2 × 3

• Two leftmost derivations
• Also, two meanings L
• 1 + 2 × 3

• 1 + 2 × 3

(

((�

�

([(

�

�

(

([(

(� (

�

�

�

6WHS��

6WHS��

6WHS��

6WHS��

6WHS��

6WHS��

The Basics
Ambiguous Grammar

• A context free grammar is
ambiguous if a derived string
has more than one distinct
leftmost derivation.
• 1 + 2 × 3 = 9 𝑜𝑟 7?
• The compiler may evaluate the

above expression to 9.

(

((�

�

([(

�

�

(

([(

(� (

�

�

�

6WHS��

6WHS��

6WHS��

6WHS��

6WHS��

6WHS��

The Basics
Ambiguous Grammar
• An example problematic grammar L

• 𝐸 → 𝐸 + 𝐸 𝐸 × 𝐸 𝑛

• Fixed grammar without ambiguity J
• 𝐸 → 𝐸 + 𝑇 | 𝑇
• 𝑻 → 𝑻 × 𝒏 | 𝒏
• 1 + 2 × 3 has only one leftmost derivation now.

(

(7�

�

7 [

�

�

Parsing Part 1
The Fundamental Idea

• Pushdown Automaton (PDA)
• Finite State Automaton + A stack with unlimited amount of memory.
• The machine can also push/pop a symbol onto/from the stack.
• A set of input symbols + A set of stack symbols.

• Recognize 𝐋 = 𝟎𝐧𝟏𝐧 𝐧 ≥ 𝟎}
• Push “0” onto the stack when the machine reads a “0” from the tape.
• Pop “0” from the stack when the machine reads a “1” from the tape.
• Accept the input if the stack is empty on reading an “𝜖” from the tape.

Parsing Part 1
CYK Algorithm

• Originally published by Itiroo Sakai in 1961.
• Sakai, Itiroo (1962). Syntax in universal translation.
• 1961 International Conference on Machine Translation of Languages and
Applied Language Analysis

• But named after its rediscoverers:
• John Cocke
• Danial Younger
• Tadao Kasami

Parsing Part 1
CYK Algorithm

• Exploit the idea of dynamic programming
• Use the solution to a smaller problem to solve a bigger problem.

• The standard version has an important assumption.
• The grammar must be rendered into Chomsky Normal Form (CNF).
• CNF defines constraints on each production rule.

• There are variants that relax some of the constraints.
• "To CNF or not to CNF? An Efficient Yet Presentable Version of the CYK
Algorithm” by Lange, Martin; Leiß, Hans in 2009.

Parsing Part 1
Chomsky Normal Form (CNF)

• Every production rule must be of the form
• 𝐴 → 𝐵𝐶
• OR
• 𝐴 → 𝑎

• Notes
• 𝐴, 𝐵, 𝐶 are any variables, and 𝑎 is any terminal.
• 𝐵, 𝐶 must not be the start variable.
• 𝑆 → 𝜖 is allowed, if 𝑆 is the start variable.

Parsing Part 1
Chomsky Normal Form (CNF)

• Every production rule must be of the form
• 𝐴 → 𝐵𝐶
• OR
• 𝐴 → 𝑎

• Observations
• A variable can be directly replaced by a terminal.
• Otherwise, a variable is separated into two parts.

• Each part is replaced by some other string.

Parsing Part 1
Chomsky Normal Form (CNF)

• [Sip] Every context free grammar can be transformed into CNF.
• The transformation is done in 5 steps:
• START: Eliminate the start variable from the right-hand sides.
• TERM: Eliminate right-hand sides with both variables and terminals.
• BIN: Eliminate right-hand sides with more than 2 variables.
• DEL: Eliminate all 𝜖-rules (𝐴 → 𝜖) not involving the start variable.
• UNIT: Eliminate all unit rules (𝐴 → 𝐵).

Parsing Part 1
Chomsky Normal Form (CNF)

• The transformation is done in 5 steps:
• START: Eliminate the start variable from the right-hand sides.

• Introduce a new start variable 𝑆′ that derives the original start variable 𝑆.

• TERM: Eliminate right-hand sides with both variables and terminals.
• BIN: Eliminate right-hand sides with more than 2 variables.
• DEL: Eliminate all 𝜖-rules (𝐴 → 𝜖) not involving the start variable.
• UNIT: Eliminate all unit rules (𝐴 → 𝐵).

𝑺 → 𝑎𝑺𝑎 𝑏𝑺𝑏 𝜖
--

𝑺! → 𝑺
𝑆 → 𝑎𝑆𝑎 𝑏𝑆𝑏 𝜖

Parsing Part 1
Chomsky Normal Form (CNF)

• The transformation is done in 5 steps:
• START: Eliminate the start variable from the right-hand sides.
• TERM: Eliminate right-hand sides with both variables and terminals.

• Introduce a new variable 𝑋! for each terminal 𝑥! on the right-hand side.
• Introduce a new production rule 𝑋! → 𝑥!.

• BIN: Eliminate right-hand sides with more than 2 variables.
• DEL: Eliminate all 𝜖-rules (𝐴 → 𝜖) not involving the start variable.
• UNIT: Eliminate all unit rules (𝐴 → 𝐵).

𝑆! → 𝑆
𝑆 → 𝒂𝑆𝒂 𝒃𝑆𝒃 𝜖

--
𝑆! → 𝑆
𝑆 → 𝑨𝑆𝑨 𝑩𝑆𝑩 𝜖
𝑨 → 𝒂
𝑩 → 𝒃

Parsing Part 1
Chomsky Normal Form (CNF)

• The transformation is done in 5 steps:
• START: Eliminate the start variable from the right-hand sides.
• TERM: Eliminate right-hand sides with both variables and terminals.
• BIN: Eliminate right-hand sides with more than 2 variables.

• 𝐴 → 𝑋"𝑋#…𝑋$; 𝐿𝑒𝑡 𝐻𝑒𝑎𝑑 = 𝑋"; 𝐿𝑒𝑡 𝑇𝑎𝑖𝑙 = 𝑋#𝑋%…𝑋$:
• Recursively replace the tail sequence of variables with a new variable until 𝑇𝑎𝑖𝑙 = 2.

• DEL: Eliminate all 𝜖-rules (𝐴 → 𝜖) not involving the start variable.
• UNIT: Eliminate all unit rules (𝐴 → 𝐵).

𝑆! → 𝑆
𝑆 → 𝑨𝑺𝑨 𝑩𝑺𝑩 𝜖
𝐴 → 𝑎; 𝐵 → 𝑏

--
𝑆! → 𝑆
𝑆 → 𝑨𝑿 𝑩𝒀 𝜖
𝑿 → 𝑺𝑨; 𝒀 → 𝑺𝑩
𝐴 → 𝑎;𝐵 → 𝑏

Parsing Part 1
Chomsky Normal Form (CNF)

• The transformation is done in 5 steps:
• START: Eliminate the start variable from the right-hand sides.
• TERM: Eliminate right-hand sides with both variables and terminals.
• BIN: Eliminate right-hand sides with more than 2 variables.
• DEL: Eliminate all 𝝐-rules (𝑨 → 𝝐) not involving the start variable.

• For each occurrence of an A on the right-hand side:
• Add a new rule with that occurrence deleted.

• UNIT: Eliminate all unit rules (𝐴 → 𝐵).

𝑆! → 𝑺
𝑆 → 𝐴𝑋 𝐵𝑌 𝝐
𝑋 → 𝑺𝐴; 𝑌 → 𝑺𝐵
𝐴 → 𝑎;𝐵 → 𝑏

--
𝑆! → 𝑆 | 𝝐
𝑆 → 𝐴𝑋 | 𝐵𝑌
𝑋 → 𝑆𝐴 𝑨; 𝑌 → 𝑆𝐵 𝑩
𝐴 → 𝑎;𝐵 → 𝑏

Parsing Part 1
Chomsky Normal Form (CNF)

• The transformation is done in 5 steps:
• START: Eliminate the start variable from the right-hand sides.
• TERM: Eliminate right-hand sides with both variables and terminals.
• BIN: Eliminate right-hand sides with more than 2 variables.
• DEL: Eliminate all 𝜖-rules (𝐴 → 𝜖) not involving the start variable.
• UNIT: Eliminate all unit rules (𝑨 → 𝑩).

• Whenever 𝐵 → 𝑣 appears, add a rule 𝐴 → 𝑣.

𝑺! → 𝑺 | 𝜖
𝑆 → 𝐴𝑋 | 𝐵𝑌
𝑿 → 𝑆𝐴 𝑨; 𝒀 → 𝑆𝐵 𝑩
𝐴 → 𝑎;𝐵 → 𝑏

--
𝑺! → 𝑨𝑿 𝑩𝒀 𝜖
𝑆 → 𝐴𝑋 | 𝐵𝑌
𝑋 → 𝑆𝐴 𝒂; 𝑌 → 𝑆𝐵 𝒃
𝐴 → 𝑎; 𝐵 → 𝑏

Parsing Part 1
Chomsky Normal Form (CNF)

• The transformation is done in 5 steps:
• START: Eliminate the start variable from the right-hand sides.
• TERM: Eliminate right-hand sides with both variables and terminals.
• BIN: Eliminate right-hand sides with more than 2 variables.
• DEL: Eliminate all 𝝐-rules (𝑨 → 𝝐) not involving the start variable.
• UNIT: Eliminate all unit rules (𝐴 → 𝐵).
• More details and time analysis are covered in the textbook and the paper.

• "To CNF or not to CNF? An Efficient Yet Presentable Version of the CYK Algorithm”

Order
Matters

Parsing Part 1
CYK Algorithm

• Given a CFG 𝐺 in CNF and an input string 𝑤 of length 𝑛.
• Exploit the properties of CNF: 𝐴 → 𝐵𝐶 or 𝐴 → 𝑎; 𝑆 → 𝜖 is allowed.

• Supposed that the input string can be generated from 𝐺…
• If a string 𝑤 is 𝜖, then there exists a rule 𝑆 → 𝜖.
• If a string 𝑤 of length 1 can be derived from a variable 𝐴,

• then there exists a rule 𝐴 → 𝑤.
• If a string 𝑤 of length ≥ 2 can be derived from a variable 𝐴…

• then there exists a rule 𝐴 → 𝐵𝐶 such that
• 𝐵 derives the substring 𝑤!"#$% (ß A smaller problem)
• 𝐶 derives the substring 𝑤&'() (ß A smaller problem)
• where 𝑤 = 𝑤!"#$% + 𝑤&'() (string concatenation)

Parsing Part 1
CYK Algorithm

• Exploit the properties of CNF: 𝐴 → 𝐵𝐶 or 𝐴 → 𝑎; 𝑆 → 𝜖 is allowed.
• If a string 𝑤 of length ≥ 2 can be derived from a variable 𝐴…

• Then there exists a rule 𝑨 → 𝑩𝑪 such that
• 𝑩 derives the substring 𝒘𝒇𝒓𝒐𝒏𝒕 (ßA smaller problem)
• 𝑪 derives the substring 𝒘𝒃𝒂𝒄𝒌 (ßA smaller problem)
• where 𝑤 = 𝑤+,-./ + 𝑤0123 (string concatenation)

• Where should we split 𝒘 into 𝒘𝒇𝒓𝒐𝒏𝒕 and 𝒘𝒃𝒂𝒄𝒌?
• We need to try every possible partitions.

• Good! We reduce a big problem into two smaller problems!
• Top-down Approach: We could recursively solve the problem now.

Parsing Part 1
CYK Algorithm

• Bottom-up Approach:
• If we know which variables generate all substrings of the input up to length 𝑘,
can we know which variable generates a particular substring of length 𝑘 + 1?
YES!
• Split a substring of length 𝑘 + 1 into two non-empty pieces (there are 𝑘 possible ways).
• For each rule of form 𝐴 → 𝐵𝐶:

• Check whether 𝐵 can generate the first piece of length 𝑝 ≤ 𝑘.
• Check whether 𝐶 can generate the second piece of length 𝑘 + 1 − 𝑝 ≤ 𝑘.
• If so, then 𝐴 can generate this substring of length 𝑘 + 1.

• Now we just check every possible substring of length 𝑘 + 1.

Parsing Part 1
CYK Algorithm

• Bottom-up Approach:
• If we know which variables generate all substrings of the input up to
length 𝑘, we know which variable generates a particular substring of
length 𝑘 + 1?
• By induction, we know which variables generate the substring of length 𝑛.

• Substring of length 𝑛 is just the input string.
• If those variables contain the start variable 𝑆, then 𝑤 ∈ 𝐿(𝐺).

Parsing Part 1
CYK Algorithm

• 𝐼𝑛𝑝𝑢𝑡 = < 𝐺LMN = (𝑉, Σ, 𝑅, 𝑆), 𝑤 = 𝜎O𝜎P…𝜎Q>; 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑐𝑒𝑝𝑡 or 𝑟𝑒𝑗𝑒𝑐𝑡.
• 𝑇𝑎𝑏𝑙𝑒 = 𝑛 × 𝑛 cells

• where 𝑇𝑎𝑏𝑙𝑒[𝑖, 𝑗] stores a set of variables that can generate the substring 𝜎!𝜎!/"…𝜎0 (𝑖 ≤ 𝑗).

• If 𝑤 is empty, if 𝑆 → 𝜖 exists then 𝑎𝑐𝑐𝑒𝑝𝑡 else 𝑟𝑒𝑗𝑒𝑐𝑡.
• For 𝑖 = 1…𝑛:

• For each variable 𝐴: If 𝐴 → 𝜎! exists, then insert 𝐴 into 𝑇𝑎𝑏𝑙𝑒[𝑖, 𝑖].
• For 𝑙 = 2…𝑛:

• For 𝑖 = 1… 𝑁 − 𝑙 + 1 :
• Let 𝑗 = 𝑖 + 𝑙 − 1; For 𝑘 = 𝑖 … 𝑗 − 1 :

• For each rule 𝐴 → 𝐵𝐶: If 𝑇𝑎𝑏𝑙𝑒[𝑖, 𝑘] contains 𝐵 and 𝑇𝑎𝑏𝑙𝑒[𝑘 + 1, 𝑗] contains 𝐶, then insert 𝐴 into 𝑇𝑎𝑏𝑙𝑒[𝑖, 𝑗].

• If 𝑇𝑎𝑏𝑙𝑒[1, 𝑛] contains 𝑆 then accept else reject.

Parsing Part 2
Practical Parsers

• The standard CYK algorithm only tells us whether an input string
can be generated.
• Sometimes, we also want to know how a string is generated.
• e.g., A compiler needs to convert the source code to an abstract syntax
tree so that it can perform type checking and produce the assembly code.
• i.e., Search for the derivation from 𝑆 to the input string 𝑤.

Parsing Part 2
Parser Types

• Top-down Parsers
• Build a derivation from the start variable to the input string.
• At each step, the parser selects a variable A and replaces the variable
with the right-hand side of the rule 𝐴 → 𝑣.

• Bottom-up Parsers
• Build a derivation from the input string back to the start variable.
• At each step, the parser identifies a substring 𝑣 that matches the right-
hand side of a rule 𝐴 → 𝑣 and replaces the substring with the variable.

Parsing Part 2
Top-down Parsers

• Begin with the start variable…
• At each step, the parser selects a variable and replaces the variable with the right-hand side of the rule.
• Keep expanding the parse tree until the leaves match the input string.

• Example with input string 𝒃𝒂𝒄𝒂𝒃:
• Derivation: 𝑆 ⇒ 𝑑+ ⇒ 𝑑, ⇒ ⋯ ⇒ 𝑑-.+ ⇒ 𝑑- = 𝑏𝑎𝑐𝑎𝑏
• Grammar: 𝑆 → 𝑏 𝐴 𝐶 𝑏; 𝐴 → 𝑎𝐴 | 𝑐; 𝐶 → 𝑐𝐶 | 𝑎
• 𝒅𝒊 = 𝒃𝒂𝑨𝑪𝒃, so 𝒅𝒊0𝟏 can be one of:

• 𝑏𝑎𝑎𝐴𝐶𝑏 (𝐴 → 𝑎𝐴)
• 𝑏𝑎𝑐𝐶𝑏 (𝐴 → 𝑐)
• 𝑏𝑎𝐴𝑐𝐶𝑏 (𝐶 → 𝑐𝐶)
• 𝑏𝑎𝐴𝑎𝑏 (𝐶 → 𝑎)

Parsing Part 2
Parser Types

• Top-down Parsers
• Recursive descent parsers (with backtracking)
• Predictive parsers: 𝐿𝐿(𝑘) parsers (without backtracking)

• Read the input Left to right; Build Leftmost derivation; Peek at most 𝒌 symbols.

• Bottom-up Parsers
• Shift-reduce parsers (without backtracking)
• 𝐿𝑅(𝑘) parsers (without backtracking)

• Read the input Left to right; Build Rightmost derivation in reverse; Peek at most 𝒌 symbols.

Parsing Part 2
𝐿𝐿(1) Parser – A Quick Glance

• Peek the next symbol is sufficient to choose the correct production rule
• 𝑆 → 𝑎𝑃 | 𝑏𝑄
• Supposed that the parser is parsing the variable 𝑆.

• If the next symbol is 𝑎, the parser consumes 𝑎 and starts to parse the variable 𝑃.
• If the next symbol is 𝑏, the parser consumes 𝑏 and starts to parse the variable 𝑄.

• Constraints on the context free grammar
• The constrained grammar is known as 𝐿𝐿(1) grammar.
• The first symbol of all strings derived from a variable must be unique.

• 𝑆 → 𝑎𝑃 𝑏𝑄 𝑎𝑅

Parsing Part 2
𝐿𝐿(1) Parser – Constraints

• Constraints on the context free grammar
• The constrained grammar is known as 𝐿𝐿(1) grammar.
• The first symbol of all strings derived from a variable must be unique.

• Problematic L:
• 𝑆 → 𝒂𝑃 𝑏𝑄 𝒂𝑅

• Fixed J:
• 𝑆 → 𝒂𝑿 | 𝑏𝑄
• 𝑿 → 𝑸 | 𝑹
• 𝑄 → 𝑐 | 𝑞
• 𝑅 → 𝑑 | 𝑟

Parsing Part 2
𝐿𝐿(1) Parser – Constraints

• Constraints on the context free grammar
• The constrained grammar is known as 𝐿𝐿(1) grammar.
• The first symbol of all strings derived from a variable must be unique.
• Left recursion is not allowed.

• 𝐸 → 𝐸 + 𝑇 | 𝑇
• 𝑇 → 𝑇 × 𝑛 | 𝑛
• When the parser is parsing 𝐸…

• It needs to parse 𝐸, then +, and finally 𝑇.
• It needs to parse 𝐸, …

• Stack overflow.

Parsing Part 2
𝐿𝐿(1) Parser – Constraints

• Constraints on the context free grammar
• The constrained grammar is known as 𝐿𝐿(1) grammar.
• The first symbol of all strings derived from a variable must be unique.
• Left recursion is not allowed.

• 𝐸 → 𝐸 + 𝑇 | 𝑇
• 𝑇 → 𝑇 × 𝑛 | 𝑛

• Left recursions removed:
• 𝐸 → 𝑇𝑍; 𝑍 → + 𝐸 | 𝜖
• 𝑇 → 𝑛𝑅; 𝑅 → × 𝑇 | 𝜖

Parsing Part 2
𝐿𝐿(1) Parser – JavaCC Example

• Generate a parser for the grammar:
• 𝐸 → 𝑇 + 𝐸 𝑇 − 𝐸 𝑇
• 𝑇 → 𝑛 × 𝑇 | 𝑛

• 𝐸 → 𝑇 + − 𝑇 ∗
• 𝑇 → 𝑃 × 𝑃 ∗
• 𝑃 → 𝑛

Context Free Grammar
Summary

• The Basics
• Syntax: 𝐴 → 𝑤
• Formal Definition: 𝐺 = 𝑉, Σ, 𝑅, 𝑆
• Derivation: 𝑆 ⇒ 𝑤3 ⇒ 𝑤4 ⇒ ⋯ ⇒ 𝑤5; 𝑆 ⇒∗ 𝑤5

• Leftmost Derivation versus Rightmost Derivation
• Ambiguous Grammar
• Parse Tree: Visual Derivations

Context Free Grammar
Summary

• Parsing
• Pushdown Automaton: Finite State Automaton + Stack
• Chomsky Normal Form: Constraints and Transformations
• Cocke-Younger-Kasami Algorithm (CYK Algorithm)
• Top-Down Parsing versus Bottom-Up Parsing

• Recursive Descent Parsers
• 𝐿𝐿(𝑘) Parsers

• 𝐿𝐿(1) Parsers: Constraints and Solutions

Context Free Grammar
Questions?

Thanks for joining today
J

Any Questions?

Context Free Grammar
References & Notes

• "Three models for the description of language"
• Noam Chomsky (1956), IRE Transactions on Information Theory.

• "To CNF or not to CNF? An Efficient Yet Presentable Version of the
CYK Algorithm”
• Martin Lange, Hans Leiß (2009), Informatica Didactica.

• “Introduction to the Theory of Computation”
• Section 2.1 and Section 2.2: Basics of CFG and PDA.
• Chapter 7: Section 7.2 Theorem 7.16: The CYK Algorithm.

Context Free Grammar
References & Notes

• “Modern Compiler Implementation in Java”
• Second Edition, Andrew Appel, 2002

• “Comparison of parser generators – Deterministic CFG"
• https://en.wikipedia.org/wiki/Comparison_of_parser_generators#Deterministic_
context-free_languages

• “JavaCC Parser Generator”
• https://javacc.github.io/javacc/

https://en.wikipedia.org/wiki/Comparison_of_parser_generators
https://javacc.github.io/javacc/

