Introduction to Context Free Grammar

CPSC 501 Presentation
Jerry Wang

What we have learnt so far... Classes of Formal Grammars

- Chomsky Hierarchy¹: 4 types of grammars
- Type 0: Turing-recognizable Languages - Turing Machine
- Type 1: Context-sensitive Languages - Linear-Bounded Automaton
- Type 2: Context-free Languages - Pushdown Automaton
- Type 3: Regular Languages - Finite State Automaton

- A simple language: $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
- Not regular but Turing-recognizable
- Also, context-free!

Context Free Grammar Today's Outline

- The Basics
- Syntax, Formal Definition, Derivations
- Parsing Part 1
- A quick look at the Pushdown Automaton
- CYK Algorithm: Can a string be generated from this grammar?
- Parsing Part 2
- Top-down Parsing
- Bottom-up Parsing
- Summary

The Basics
 First Glance

- An example context free grammar:
- $S \rightarrow 0 S 1$
- $S \rightarrow \epsilon$

The Basics
 Grammar Components

- An example context free grammar:
- $S \rightarrow 0 S 1$
- $S \rightarrow \epsilon$
- Contains a collection of production rules
- Also called substitution rules or rewrite rules.

The Basics
 Grammar Components

- An example context free grammar:
- $S \rightarrow 0 S 1$
- $S \rightarrow \epsilon$
- Each production rule ($V \rightarrow \boldsymbol{w}$) contains...
- A symbol called variable or non-terminals
- A right arrow
- A string that contains other variables and terminals

The Basics
 Grammar Components

- An example context free grammar:
- $S \rightarrow 0 S 1$
- $S \rightarrow \epsilon$
- Each production rule ($V \rightarrow \boldsymbol{w}$) contains...
- A symbol called variable or non-terminals
- A right arrow
- A string that contains other variables and terminals

The Basics
 Grammar Components

- An example context free grammar:
- $S \rightarrow$ 0S1
- $S \rightarrow \boldsymbol{\epsilon}$
- Each production rule ($V \rightarrow \boldsymbol{w}$) contains...
- A symbol called variable or non-terminals
- A right arrow
- A string that contains other variables and terminals

The Basics
 Grammar Components

- An example context free grammar:
- $S \rightarrow 0 S 1$
- $S \rightarrow \epsilon$
- Each production rule ($\boldsymbol{V} \rightarrow \boldsymbol{w}$) defines...
- How to replace a variable V with a string w regardless of the current context.
- Do this repeatedly until there is no variable left.
- The result is a string over all terminals.

The Basics
 Grammar Components

- An example context free grammar:
- $S \rightarrow 0 S 1$
- $S \rightarrow \epsilon$
- One more thing: The start variable
- Defines the starting point of a sequence of substitutions.
- Usually, it is the variable of the very first production rule.

The Basics
 Formal Definition

- Components: The 4-tuple ($V, \Sigma, \mathbf{R}, \mathbf{S}$)
- V : A finite set of variables
- Σ : A finite set of terminals that is disjoint from V
- R : A finite set of production rules
- S : The start variable $(S \in V)$

The Basics
 Formal Definition - Example

- Components: The 4-tuple ($V, \Sigma, \mathbf{R}, \mathbf{S}$)
- V : A finite set of variables
- Σ : A finite set of terminals that is disjoint from V
- R : A finite set of production rules
- S : The start variable $(S \in V)$
- An example grammar: $V=\{\boldsymbol{S}\} ; \boldsymbol{\Sigma}=\{0,1, \epsilon\} ; \mathbf{S}_{\text {start }}=\mathbf{S}$
- $S \rightarrow 0 S 1$

OR: $S \rightarrow \mathbf{0 S 1} \mid \boldsymbol{\epsilon}$

The Basics Derivation

- Generate a string from the start variable
- Step 1: Write down the start variable.
- Step 2: Select a variable on the paper.
- Step 3: Find the rule that has the selected variable on the left-hand side.
- Step 4: Replace the selected variable with the right-hand side of that rule.
- Step 5: Repeat Steps 2 - 5 until there is no variable left on the paper.

The Basics
 Derivation - Example 1

- Generate a string from the start variable
- Step 1: Write down the start variable.
- Step 2: Select a variable on the paper.
- Step 3: Find the rule that has the selected variable on the left-hand side.
- Step 4: Replace the selected variable with the right-hand side of that rule.
- Step 5: Repeat Steps 2 - 5 until there is no variable left on the paper.
- Grammar: $S \rightarrow 0 S 1 \mid \epsilon$
- Derivation: S

The Basics Derivation - Example 1

- Generate a string from the start variable
- Step 1: Write down the start variable.
- Step 2: Select a variable on the paper.
- Step 3: Find the rule that has the selected variable on the left-hand side.
- Step 4: Replace the selected variable with the right-hand side of that rule.
- Step 5: Repeat Steps 2 - 5 until there is no variable left on the paper.
- Grammar: $S \rightarrow 0 S 1 \mid \epsilon$
- Derivation: $S \Rightarrow 0 S 1$

The Basics
 Derivation - Example 1

- Generate a string from the start variable
- Step 1: Write down the start variable.
- Step 2: Select a variable on the paper.
- Step 3: Find the rule that has the selected variable on the left-hand side.
- Step 4: Replace the selected variable with the right-hand side of that rule.
- Step 5: Repeat Steps $2-5$ until there is no variable left on the paper.
- Grammar: $S \rightarrow 0 S 1 \mid \epsilon$
- Derivation: $S \Rightarrow 0 S 1 \Rightarrow 00 S 11 \Rightarrow 00 \epsilon 11=0011$

The Basics
 Derivation - Example 2

- Generate a string from the start variable
- Grammar: $S \rightarrow a S a|b S b| \epsilon$
- Derivation:

$$
\begin{aligned}
& S \Rightarrow a S a \\
& \Rightarrow a a S a a \\
& \Rightarrow a a b S b a a \\
& \Rightarrow a a b \in b a a \\
& =a a b b a a
\end{aligned}
$$

- PALINDROME $E_{\{a, b\}}$

The Basics Derivation

- Context Free Grammar $\mathbf{G}=(\boldsymbol{V}, \mathbf{\Sigma}, \mathbf{R}, \mathbf{S})$
- V : A finite set of variables
- Σ : A finite set of terminals that is disjoint from V
- R : A finite set of production rules
- S : The start variable $(S \in V)$
- Context Free Language $L(\boldsymbol{G})=\left\{\boldsymbol{w} \in \boldsymbol{\Sigma}^{*} \mid \boldsymbol{S} \Rightarrow^{*} \boldsymbol{w}\right\}$
- The set of all strings derived from the start variable.

The Basics
 Derivation - Potential Problem?

- Generate a string from the start variable
- Step 1: Write down the start variable.
- Step 2: Select a variable on the paper.
- Step 3: Find the rule that has the selected variable on the left-hand side.
- Step 4: Replace the selected variable with the right-hand side of that rule.
- Step 5: Repeat Steps 2 - 5 until there is no variable left on the paper.
- What if there are multiple variables on the paper?
- Which one should be replaced next?

The Basics
 Derivation - Leftmost versus Rightmost

- Generate a string from the start variable
- Step 1: Write down the start variable.
- Step 2: Select a variable on the paper.
- Leftmost Derivation: Always replace the leftmost variable in each step.
- Rightmost Derivation: Always replace the rightmost variable in each step.
- Step 3: Find the rule that has the selected variable on the left-hand side.
- Step 4: Replace the selected variable with the right-hand side of that rule.
- Step 5: Repeat Steps 2 - 5 until there is no variable left on the paper.

The Basics
 Visualize Derivation

- An example problematic grammar
- $E \rightarrow E+E|E \times E| n$
- where E stands for Expression and n is any integer literal
- Derive the string $1+2 \times 3$ from E

The Basics
 Visualize Derivation Leftmost

- $E \rightarrow E+E|E \times E| n$
- String: $1+2 \times 3$
- Two leftmost derivations
- Also, two meanings : $:$
- $1+(2 \times 3)$
- $(1+2) \times 3$

The Basics

Ambiguous Grammar

- A context free grammar is ambiguous if a derived string has more than one distinct leftmost derivation.
- $1+2 \times 3=9$ or 7 ?
- The compiler may evaluate the above expression to 9 .

The Basics
 Ambiguous Grammar

- An example problematic grammar $(:)$
- $E \rightarrow E+E|E \times E| n$
- Fixed grammar without ambiguity $)_{\text {- }}$
- $E \rightarrow E+T \mid T$
- $\boldsymbol{T} \rightarrow \boldsymbol{T} \times \boldsymbol{n} \mid \boldsymbol{n}$
- $1+2 \times 3$ has only one leftmost derivation now.

Parsing Part 1 The Fundamental Idea

- Pushdown Automaton (PDA)
- Finite State Automaton + A stack with unlimited amount of memory.
- The machine can also push/pop a symbol onto/from the stack.
- A set of input symbols + A set of stack symbols.
- Recognize $L=\left\{0^{\mathbf{n}} 1^{\mathbf{n}} \mid \mathbf{n} \geq 0\right\}$
- Push " 0 " onto the stack when the machine reads a " 0 " from the tape.
- Pop " 0 " from the stack when the machine reads a " 1 " from the tape.
- Accept the input if the stack is empty on reading an " ϵ " from the tape.

Parsing Part 1 CYK Algorithm

- Originally published by Itiroo Sakai in 1961.
- Sakai, Itiroo (1962). Syntax in universal translation.
- 1961 International Conference on Machine Translation of Languages and Applied Language Analysis
- But named after its rediscoverers:
- John Cocke
- Danial Younger
- Tadao Kasami

Parsing Part 1
 CYK Algorithm

- Exploit the idea of dynamic programming
- Use the solution to a smaller problem to solve a bigger problem.
- The standard version has an important assumption.
- The grammar must be rendered into Chomsky Normal Form (CNF).
- CNF defines constraints on each production rule.
- There are variants that relax some of the constraints.
- "To CNF or not to CNF? An Efficient Yet Presentable Version of the CYK Algorithm" by Lange, Martin; Leiß, Hans in 2009.

Parsing Part 1
 Chomsky Normal Form (CNF)

- Every production rule must be of the form
- $A \rightarrow B C$
- OR
- $A \rightarrow a$
- Notes
- A, B, C are any variables, and a is any terminal.
- B, C must not be the start variable.
- $S \rightarrow \epsilon$ is allowed, if S is the start variable.

Parsing Part 1 Chomsky Normal Form (CNF)

- Every production rule must be of the form
- $A \rightarrow B C$
- OR
- $A \rightarrow a$
- Observations
- A variable can be directly replaced by a terminal.
- Otherwise, a variable is separated into two parts.
- Each part is replaced by some other string.

Parsing Part 1 Chomsky Normal Form (CNF)

- [Sip] Every context free grammar can be transformed into CNF.
- The transformation is done in 5 steps:
- START: Eliminate the start variable from the right-hand sides.
- TERM: Eliminate right-hand sides with both variables and terminals.
- BIN: Eliminate right-hand sides with more than 2 variables.
- DEL: Eliminate all ϵ-rules $(A \rightarrow \epsilon)$ not involving the start variable.
- UNIT: Eliminate all unit rules $(A \rightarrow B)$.

Parsing Part 1 Chomsky Normal Form (CNF)

$$
S \rightarrow a S a|b S b| \epsilon
$$

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow a S a|b S b| \epsilon
\end{aligned}
$$

- The transformation is done in 5 steps:
- START: Eliminate the start variable from the right-hand sides.
- Introduce a new start variable S^{\prime} that derives the original start variable S.
- TERM: Eliminate right-hand sides with both variables and terminals.
- BIN: Eliminate right-hand sides with more than 2 variables.
- DEL: Eliminate all ϵ-rules $(A \rightarrow \epsilon)$ not involving the start variable.
- UNIT: Eliminate all unit rules $(A \rightarrow B)$.

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow a S a|b S b| \epsilon
\end{aligned}
$$

Parsing Part 1
 Chomsky Normal Form (CNF)

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow A S A|B S B| \epsilon \\
& A \rightarrow a \\
& B \rightarrow b
\end{aligned}
$$

- The transformation is done in 5 steps:
- START: Eliminate the start variable from the right-hand sides.
- TERM: Eliminate right-hand sides with both variables and terminals.
- Introduce a new variable X_{i} for each terminal x_{i} on the right-hand side.
- Introduce a new production rule $X_{i} \rightarrow x_{i}$.
- BIN: Eliminate right-hand sides with more than 2 variables.
- DEL: Eliminate all ϵ-rules $(A \rightarrow \epsilon)$ not involving the start variable.
- UNIT: Eliminate all unit rules $(A \rightarrow B)$.

```
```

S'}->

```
```

S'}->
S->ASA|BSB|\epsilon

```
S->ASA|BSB|\epsilon
```

```
A->a;B->b
```

```
A->a;B->b
```

Parsing Part 1
Chomsky Normal Form (CNF)

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow A X|B Y| \epsilon \\
& X \rightarrow S A ; Y \rightarrow S B \\
& A \rightarrow a ; B \rightarrow b
\end{aligned}
$$

- The transformation is done in 5 steps:
- START: Eliminate the start variable from the right-hand sides.
- TERM: Eliminate right-hand sides with both variables and terminals.
- BIN: Eliminate right-hand sides with more than $\mathbf{2}$ variables.
- $A \rightarrow X_{1} X_{2} \ldots X_{n}$; Let Head $=X_{1}$; Let Tail $=X_{2} X_{3} \ldots X_{n}$:
- Recursively replace the tail sequence of variables with a new variable until \mid Tail $\mid=2$.
- DEL: Eliminate all ϵ-rules $(A \rightarrow \epsilon)$ not involving the start variable.
- UNIT: Eliminate all unit rules $(A \rightarrow B)$.

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow A X|B Y| \epsilon \\
& X \rightarrow S A ; Y \rightarrow S B \\
& A \rightarrow a ; B \rightarrow b
\end{aligned}
$$

Parsing Part 1
Chomsky Normal Form (CNF)

$$
\begin{aligned}
& S^{\prime} \rightarrow S \mid \epsilon \\
& S \rightarrow A X \mid B Y \\
& X \rightarrow S A|A ; Y \rightarrow S B| B \\
& A \rightarrow a ; B \rightarrow b
\end{aligned}
$$

- The transformation is done in $\mathbf{5}$ steps:
- START: Eliminate the start variable from the right-hand sides.
- TERM: Eliminate right-hand sides with both variables and terminals.
- BIN: Eliminate right-hand sides with more than 2 variables.
- DEL: Eliminate all ϵ-rules $(A \rightarrow \epsilon)$ not involving the start variable.
- For each occurrence of an A on the right-hand side:
- Add a new rule with that occurrence deleted.
- UNIT: Eliminate all unit rules $(A \rightarrow B)$.

$$
\begin{aligned}
& S^{\prime} \rightarrow S \mid \epsilon \\
& S \rightarrow A X \mid B Y \\
& X \rightarrow S A|A ; Y \rightarrow S B| B \\
& A \rightarrow a ; B \rightarrow b
\end{aligned}
$$

Parsing Part 1
Chomsky Normal Form (CNF)

$$
\begin{aligned}
& S^{\prime} \rightarrow A X|B Y| \epsilon \\
& S \rightarrow A X \mid B Y \\
& X \rightarrow S A|a ; Y \rightarrow S B| b \\
& A \rightarrow a ; B \rightarrow b
\end{aligned}
$$

- The transformation is done in 5 steps:
- START: Eliminate the start variable from the right-hand sides.
- TERM: Eliminate right-hand sides with both variables and terminals.
- BIN: Eliminate right-hand sides with more than 2 variables.
- DEL: Eliminate all ϵ-rules $(A \rightarrow \epsilon)$ not involving the start variable.
- UNIT: Eliminate all unit rules ($\boldsymbol{A} \rightarrow \boldsymbol{B}$).
- Whenever $B \rightarrow v$ appears, add a rule $A \rightarrow v$.

Parsing Part 1 Chomsky Normal Form (CNF)

- The transformation is done in 5 steps:
- START: Eliminate the start variable from the right-hand sides.
- TERM: Eliminate right-hand sides with both variables and terminals.
- BIN: Eliminate right-hand sides with more than 2 variables.
- DEL: Eliminate all ϵ-rules $(A \rightarrow \epsilon)$ not involving the start variable.
- UNIT: Eliminate all unit rules $(A \rightarrow B)$.
- More details and time analysis are covered in the textbook and the paper.
- "To CNF or not to CNF? An Efficient Yet Presentable Version of the CYK Algorithm"

Parsing Part 1 CYK Algorithm

- Given a CFG G in CNF and an input string w of length n.
- Exploit the properties of CNF: $A \rightarrow B C$ or $A \rightarrow a ; S \rightarrow \epsilon$ is allowed.
- Supposed that the input string can be generated from G...
- If a string w is ϵ, then there exists a rule $S \rightarrow \epsilon$.
- If a string w of length 1 can be derived from a variable A,
- then there exists a rule $A \rightarrow w$.
- If a string w of length ≥ 2 can be derived from a variable A...
- then there exists a rule $A \rightarrow B C$ such that
- B derives the substring $w_{\text {front }}(\leftarrow \mathrm{A}$ smaller problem)
- C derives the substring $w_{b a c k}(\leftarrow \mathrm{~A}$ smaller problem)
- where $w=w_{\text {front }}+w_{\text {back }}$ (string concatenation)

Parsing Part 1 CYK Algorithm

- Exploit the properties of CNF: $A \rightarrow B C$ or $A \rightarrow a ; S \rightarrow \epsilon$ is allowed. - If a string w of length ≥ 2 can be derived from a variable A...
- Then there exists a rule $A \rightarrow B C$ such that
- B derives the substring $w_{\text {front }}(\leftarrow A$ smaller problem)
- C derives the substring $w_{\text {back }}(\leftarrow \mathrm{A}$ smaller problem)
- where $w=w_{\text {front }}+w_{\text {back }}$ (string concatenation)
- Where should we split w into $w_{\text {front }}$ and $w_{\text {back }}$?
- We need to try every possible partitions.
- Good! We reduce a big problem into two smaller problems!
- Top-down Approach: We could recursively solve the problem now.

- Bottom-up Approach:

- If we know which variables generate all substrings of the input up to length k, can we know which variable generates a particular substring of length $k+1$? YES!
- Split a substring of length $k+1$ into two non-empty pieces (there are k possible ways).
- For each rule of form $A \rightarrow B C$:
- Check whether B can generate the first piece of length $p \leq k$.
- Check whether C can generate the second piece of length $k+1-p \leq k$.
- If so, then A can generate this substring of length $k+1$.
- Now we just check every possible substring of length $k+1$.

Parsing Part 1 CYK Algorithm

- Bottom-up Approach:

- If we know which variables generate all substrings of the input up to length k, we know which variable generates a particular substring of length $k+1$?
- By induction, we know which variables generate the substring of length n.
- Substring of length n is just the input string.
- If those variables contain the start variable S, then $w \in L(G)$.

Parsing Part 1 CYK Algorithm

- Input $=<G_{C N F}=(V, \Sigma, R, S), w=\sigma_{1} \sigma_{2} \ldots \sigma_{n}>;$ Output $=$ accept or reject.
- Table $=n \times n$ cells
- where Table $[i, j]$ stores a set of variables that can generate the substring $\sigma_{i} \sigma_{i+1} \ldots \sigma_{j}(i \leq j)$.
- If w is empty, if $S \rightarrow \epsilon$ exists then accept else reject.
- For $i=1 \ldots n$:
- For each variable A : If $A \rightarrow \sigma_{i}$ exists, then insert A into $\operatorname{Table}[i, i]$.
- For $l=2$... n :
- For $i=1 \ldots(N-l+1)$:
- Let $j=i+l-1$; For $k=i \ldots(j-1)$:
- For each rule $A \rightarrow B C$: If Table $[i, k]$ contains B and Table $[k+1, j]$ contains C, then insert A into Table $[i, j]$.
- If Table $[1, n]$ contains S then accept else reject.

Parsing Part 2 Practical Parsers

- The standard CYK algorithm only tells us whether an input string can be generated.
- Sometimes, we also want to know how a string is generated.
- e.g., A compiler needs to convert the source code to an abstract syntax tree so that it can perform type checking and produce the assembly code.
- i.e., Search for the derivation from S to the input string w.

Parsing Part 2 Parser Types

- Top-down Parsers
- Build a derivation from the start variable to the input string.
- At each step, the parser selects a variable A and replaces the variable with the right-hand side of the rule $A \rightarrow v$.
- Bottom-up Parsers
- Build a derivation from the input string back to the start variable.
- At each step, the parser identifies a substring v that matches the righthand side of a rule $A \rightarrow v$ and replaces the substring with the variable.

Parsing Part 2 Top-down Parsers

- Begin with the start variable...
- At each step, the parser selects a variable and replaces the variable with the right-hand side of the rule.
- Keep expanding the parse tree until the leaves match the input string.
- Example with input string bacab:
- Derivation: $S \Rightarrow d_{1} \Rightarrow d_{2} \Rightarrow \cdots \Rightarrow d_{n-1} \Rightarrow d_{n}=$ bacab
- Grammar: $S \rightarrow b A C b ; A \rightarrow a A|c ; C \rightarrow c C| a$
- $d_{i}=b a A C b$, so d_{i+1} can be one of:
- baaACb $(A \rightarrow a A)$
- $\operatorname{bacCb}(A \rightarrow c)$
- baAcCb $(C \rightarrow c C)$
- baAab $(C \rightarrow a)$

Parsing Part 2 Parser Types

- Top-down Parsers
- Recursive descent parsers (with backtracking)
- Predictive parsers: $L L(k)$ parsers (without backtracking)
- Read the input Left to right; Build Leftmost derivation; Peek at most k symbols.
- Bottom-up Parsers
- Shift-reduce parsers (without backtracking)
- LR(k) parsers (without backtracking)
- Read the input Left to right; Build Rightmost derivation in reverse; Peek at most \boldsymbol{k} symbols.

Parsing Part 2 LL(1) Parser - A Quick Glance

- Peek the next symbol is sufficient to choose the correct production rule
- $S \rightarrow a P \mid b Q$
- Supposed that the parser is parsing the variable S.
- If the next symbol is a, the parser consumes a and starts to parse the variable P.
- If the next symbol is b, the parser consumes b and starts to parse the variable Q.
- Constraints on the context free grammar
- The constrained grammar is known as $L L(1)$ grammar.
- The first symbol of all strings derived from a variable must be unique.
- $S \rightarrow a P|b Q| a R$

Parsing Part 2
 LL(1) Parser - Constraints

- Constraints on the context free grammar
- The constrained grammar is known as $L L(1)$ grammar.
- The first symbol of all strings derived from a variable must be unique.
- Problematic : :
- $S \rightarrow a P|b Q| a R$
- Fixed \odot :
- $S \rightarrow a X \mid b Q$
- $\boldsymbol{X} \rightarrow \boldsymbol{Q} \mid \boldsymbol{R}$
- $Q \rightarrow c \mid q$
- $R \rightarrow d \mid r$

Parsing Part 2
 LL(1) Parser - Constraints

- Constraints on the context free grammar
- The constrained grammar is known as $L L(1)$ grammar.
- The first symbol of all strings derived from a variable must be unique.
- Left recursion is not allowed.
- $E \rightarrow E+T \mid T$
- $T \rightarrow T \times n \mid n$
- When the parser is parsing E...
- It needs to parse E, then + , and finally T.
- It needs to parse E_{1}...
- Stack overflow.

Parsing Part 2
 LL(1) Parser - Constraints

- Constraints on the context free grammar
- The constrained grammar is known as $L L(1)$ grammar.
- The first symbol of all strings derived from a variable must be unique.
- Left recursion is not allowed.
- $E \rightarrow E+T \mid T$
- $T \rightarrow T \times n \mid n$
- Left recursions removed:
- $E \rightarrow T Z ; Z \rightarrow+E \mid \epsilon$
- $T \rightarrow n R ; R \rightarrow \times T \mid \epsilon$

Parsing Part 2
 LL(1) Parser - JavaCC Example

- Generate a parser for the grammar:
- $E \rightarrow T+E|T-E| T$
- $T \rightarrow n \times T \mid n$
- $E \rightarrow T((+\mid-) T) *$
- $T \rightarrow P(\times P) *$
- $P \rightarrow n$

Context Free Grammar Summary

- The Basics
- Syntax: $A \rightarrow w$
- Formal Definition: $G=(V, \Sigma, R, S)$
- Derivation: $S \Rightarrow w_{1} \Rightarrow w_{2} \Rightarrow \cdots \Rightarrow w_{n} ; S \Rightarrow^{*} w_{n}$
- Leftmost Derivation versus Rightmost Derivation
- Ambiguous Grammar
- Parse Tree: Visual Derivations

Context Free Grammar Summary

- Parsing
- Pushdown Automaton: Finite State Automaton + Stack
- Chomsky Normal Form: Constraints and Transformations
- Cocke-Younger-Kasami Algorithm (CYK Algorithm)
- Top-Down Parsing versus Bottom-Up Parsing
- Recursive Descent Parsers
- LL(k) Parsers
- LL(1) Parsers: Constraints and Solutions

Context Free Grammar

 Questions?
Thanks for joining today

©
Any Questions?

Context Free Grammar References \& Notes

- "Three models for the description of language"
- Noam Chomsky (1956), IRE Transactions on Information Theory.
- "To CNF or not to CNF? An Efficient Yet Presentable Version of the CYK Algorithm"
- Martin Lange, Hans Leiß (2009), Informatica Didactica.
- "Introduction to the Theory of Computation"
- Section 2.1 and Section 2.2: Basics of CFG and PDA.
- Chapter 7: Section 7.2 Theorem 7.16: The CYK Algorithm.

Context Free Grammar References \& Notes

- "Modern Compiler Implementation in Java"
- Second Edition, Andrew Appel, 2002
- "Comparison of parser generators - Deterministic CFG"
- https://en.wikipedia.org/wiki/Comparison_of_parser_generators\#Deterministic_ context-free_languages
- "JavaCC Parser Generator"
- https://javacc.github.io/javacc/

