

Introduction to Context Free Grammar

CPSC 501 Presentation

Jerry Wang

What we have learnt so far... Classes of Formal Grammars

• Chomsky Hierarchy¹: 4 types of grammars

- Type 0: Turing-recognizable Languages Turing Machine
- Type 1: Context-sensitive Languages Linear-Bounded Automaton
- Type 2: Context-free Languages Pushdown Automaton
- Type 3: Regular Languages Finite State Automaton
- A simple language: $L=\{0^n1^n\mid n\geq 0\}$
 - Not regular but Turing-recognizable
 - Also, context-free!

Context Free Grammar Today's Outline

- The Basics
 - Syntax, Formal Definition, Derivations

Parsing Part 1

- A quick look at the Pushdown Automaton
- CYK Algorithm: Can a string be generated from this grammar?

Parsing Part 2

- Top-down Parsing
- Bottom-up Parsing
- Summary

The Basics First Glance

• An example context free grammar:

- $S \rightarrow 0S1$
- $S \rightarrow \epsilon$

• An example context free grammar:

- $S \rightarrow 0S1$
- $S \to \epsilon$

Contains a collection of production rules

• Also called substitution rules or rewrite rules.

- An example context free grammar:
 - $S \rightarrow 0S1$
 - $S \rightarrow \epsilon$
- Each production rule ($V \rightarrow w$) contains...
 - A symbol called variable or non-terminals
 - A right arrow
 - A string that contains other variables and terminals

• An example context free grammar:

- $S \rightarrow 0S1$
- $S \rightarrow \epsilon$

• Each production rule ($V \rightarrow w$) contains...

- A symbol called variable or non-terminals
- A right arrow
- A string that contains other variables and terminals

- An example context free grammar:
 - *S* → **0***S***1**
 - $S \rightarrow \epsilon$
- Each production rule ($V \rightarrow w$) contains...
 - A symbol called variable or non-terminals
 - A right arrow
 - A string that contains other variables and terminals

• An example context free grammar:

- $S \rightarrow 0S1$
- $S \to \epsilon$

• Each production rule ($V \rightarrow w$) defines...

- How to replace a variable V with a string w regardless of the current context.
- Do this repeatedly until there is no variable left.
- The result is a string over all terminals.

• An example context free grammar:

- $S \rightarrow 0S1$
- $S \to \epsilon$

• One more thing: The start variable

- Defines the starting point of a sequence of substitutions.
- Usually, it is the variable of the very first production rule.

The Basics Formal Definition

• Components: The 4-tuple (V, Σ, R, S)

- V : A finite set of variables
- Σ : A finite set of terminals that is disjoint from V
- *R* : A finite set of production rules
- S: The start variable ($S \in V$)

The Basics Formal Definition - Example

• Components: The 4-tuple (V, Σ, R, S)

- V : A finite set of variables
- Σ : A finite set of terminals that is disjoint from V
- *R* : A finite set of production rules
- S: The start variable ($S \in V$)
- An example grammar: $V = \{S\}$; $\Sigma = \{0, 1, \epsilon\}$; $S_{start} = S$
 - $S \to 0S1$ • $S \to \epsilon$ OR: $S \to 0S1 \mid \epsilon$

The empty string

The Basics Derivation

- Step 1: Write down the start variable.
- Step 2: Select a variable on the paper.
- Step 3: Find the rule that has the selected variable on the left-hand side.
- Step 4: Replace the selected variable with the right-hand side of that rule.
- Step 5: Repeat Steps 2 5 until there is no variable left on the paper.

- Step 1: Write down the start variable.
- Step 2: Select a variable on the paper.
- Step 3: Find the rule that has the selected variable on the left-hand side.
- Step 4: Replace the selected variable with the right-hand side of that rule.
- Step 5: Repeat Steps 2 5 until there is no variable left on the paper.
- Grammar: $S \rightarrow 0S1 \mid \epsilon$
- Derivation: S

- Step 1: Write down the start variable.
- Step 2: Select a variable on the paper.
- Step 3: Find the rule that has the selected variable on the left-hand side.
- Step 4: Replace the selected variable with the right-hand side of that rule.
- Step 5: Repeat Steps 2 5 until there is no variable left on the paper.
- Grammar: $S \rightarrow 0S1 \mid \epsilon$
- **Derivation**: $S \Rightarrow 0S1$

- Step 1: Write down the start variable.
- Step 2: Select a variable on the paper.
- Step 3: Find the rule that has the selected variable on the left-hand side.
- Step 4: Replace the selected variable with the right-hand side of that rule.
- Step 5: Repeat Steps 2 5 until there is no variable left on the paper.
- Grammar: $S \rightarrow 0S1 \mid \epsilon$
- **Derivation**: $S \Rightarrow 0S1 \Rightarrow 00S1 \Rightarrow 00\epsilon11 = 0011$

Generate a string from the start variable

- **Grammar:** $S \rightarrow aSa \mid bSb \mid \epsilon$
- Derivation:

- $S \Rightarrow aSa$ $\Rightarrow aaSaa$ $\Rightarrow aabSbaa$ $\Rightarrow aab\epsilon baa$
- = **aabbaa**

• $PALINDROME_{\{a,b\}}$

The Basics Derivation

• Context Free Grammar $G = (V, \Sigma, R, S)$

- V : A finite set of variables
- Σ : A finite set of terminals that is disjoint from V
- *R* : A finite set of production rules
- S: The start variable ($S \in V$)

- Context Free Language $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$
 - The set of all strings derived from the start variable.

The Basics Derivation – Potential Problem?

Generate a string from the start variable

- Step 1: Write down the start variable.
- Step 2: Select a variable on the paper.
- Step 3: Find the rule that has the selected variable on the left-hand side.
- Step 4: Replace the selected variable with the right-hand side of that rule.
- Step 5: Repeat Steps 2 5 until there is no variable left on the paper.

• What if there are multiple variables on the paper?

• Which one should be replaced next?

The Basics Derivation – Leftmost versus Rightmost

- Step 1: Write down the start variable.
- Step 2: Select a variable on the paper.
 - Leftmost Derivation: Always replace the leftmost variable in each step.
 - **Rightmost Derivation:** Always replace the rightmost variable in each step.
- Step 3: Find the rule that has the selected variable on the left-hand side.
- Step 4: Replace the selected variable with the right-hand side of that rule.
- Step 5: Repeat Steps 2 5 until there is no variable left on the paper.

The Basics Visualize Derivation

An example problematic grammar

- $E \rightarrow E + E \mid E \times E \mid n$
- where *E* stands for *Expression* and *n* is any integer literal
- Derive the string $1 + 2 \times 3$ from *E*

The Basics Visualize Derivation – Leftmost

- $E \to E + E \mid E \times E \mid n$
- String: $1 + 2 \times 3$
- Two leftmost derivations
 - Also, two meanings $\ensuremath{\mathfrak{S}}$
 - $1 + (2 \times 3)$
 - $(1+2) \times 3$

The Basics Ambiguous Grammar

- A context free grammar is ambiguous if a derived string has more than one distinct leftmost derivation.
 - $1 + 2 \times 3 = 9 \text{ or } 7$?
 - The compiler may evaluate the above expression to 9.

The Basics Ambiguous Grammar

- An example problematic grammar 😕
 - $E \rightarrow E + E \mid E \times E \mid n$
- Fixed grammar without ambiguity S
 - $E \rightarrow E + T \mid T$
 - $T \rightarrow T \times n \mid n$
 - $1 + 2 \times 3$ has only one leftmost derivation now.

Parsing Part 1 The Fundamental Idea

Pushdown Automaton (PDA)

- Finite State Automaton + A stack with unlimited amount of memory.
- The machine can also push/pop a symbol onto/from the stack.
- A set of input symbols + A set of stack symbols.
- $\bullet \, \text{Recognize} \, L = \{ 0^n 1^n \mid n \geq 0 \}$
 - Push "0" onto the stack when the machine reads a "0" from the tape.
 - Pop "0" from the stack when the machine reads a "1" from the tape.
 - Accept the input if the stack is empty on reading an " ϵ " from the tape.

- Originally published by Itiroo Sakai in 1961.
 - Sakai, Itiroo (1962). Syntax in universal translation.
 - 1961 International Conference on Machine Translation of Languages and Applied Language Analysis

But named after its rediscoverers:

- John Cocke
- Danial Younger
- Tadao Kasami

- Exploit the idea of dynamic programming
 - Use the solution to a smaller problem to solve a bigger problem.
- The standard version has an important assumption.
 - The grammar must be rendered into Chomsky Normal Form (CNF).
 - CNF defines constraints on each production rule.
- There are variants that relax some of the constraints.
 - "To CNF or not to CNF? An Efficient Yet Presentable Version of the CYK Algorithm" by Lange, Martin; Leiß, Hans in 2009.

Every production rule must be of the form

- $A \rightarrow BC$
- OR
- $A \rightarrow a$

Notes

- *A*, *B*, *C* are any variables, and *a* is any terminal.
- *B*, *C* must not be the start variable.
- $S \rightarrow \epsilon$ is allowed, if S is the start variable.

Every production rule must be of the form

- $A \rightarrow BC$
- OR
- $A \rightarrow a$

Observations

- A variable can be directly replaced by a terminal.
- Otherwise, a variable is separated into two parts.
 - Each part is replaced by some other string.

- [Sip] Every context free grammar can be transformed into CNF.
- The transformation is done in 5 steps:
 - START: Eliminate the start variable from the right-hand sides.
 - TERM: Eliminate right-hand sides with both variables and terminals.
 - BIN: Eliminate right-hand sides with more than 2 variables.
 - DEL: Eliminate all ϵ -rules ($A \rightarrow \epsilon$) not involving the start variable.
 - UNIT: Eliminate all unit rules $(A \rightarrow B)$.

$S \rightarrow aSa \mid bSb \mid \epsilon$

 $\begin{array}{l} S' \to S \\ S \to aSa \mid bSb \mid \epsilon \end{array}$

• The transformation is done in 5 steps:

- START: Eliminate the start variable from the right-hand sides.
 - Introduce a new start variable S' that derives the original start variable S.
- TERM: Eliminate right-hand sides with both variables and terminals.
- BIN: Eliminate right-hand sides with more than 2 variables.
- DEL: Eliminate all ϵ -rules ($A \rightarrow \epsilon$) not involving the start variable.
- UNIT: Eliminate all unit rules $(A \rightarrow B)$.

 $S' \to S$ $S \to aSa \mid bSb \mid \epsilon$

 $S' \to S$ $S \to ASA \mid BSB \mid \epsilon$ $A \to a$ $B \to b$

• The transformation is done in 5 steps:

- START: Eliminate the start variable from the right-hand sides.
- TERM: Eliminate right-hand sides with both variables and terminals.
 - Introduce a new variable X_i for each terminal x_i on the right-hand side.
 - Introduce a new production rule $X_i \rightarrow x_i$.
- BIN: Eliminate right-hand sides with more than 2 variables.
- DEL: Eliminate all ϵ -rules ($A \rightarrow \epsilon$) not involving the start variable.
- UNIT: Eliminate all unit rules $(A \rightarrow B)$.

 $S' \rightarrow S$ $S \rightarrow ASA \mid BSB \mid \epsilon$ $A \rightarrow a; B \rightarrow b$ $S' \rightarrow S$ $S \rightarrow AX \mid BY \mid \epsilon$

 $X \rightarrow SA; Y \rightarrow SB$

 $A \rightarrow a; B \rightarrow b$

- The transformation is done in 5 steps:
 - START: Eliminate the start variable from the right-hand sides.
 - TERM: Eliminate right-hand sides with both variables and terminals.
 - BIN: Eliminate right-hand sides with more than 2 variables.
 - $A \rightarrow X_1 X_2 \dots X_n$; Let Head = X_1 ; Let Tail = $X_2 X_3 \dots X_n$:
 - Recursively replace the tail sequence of variables with a new variable until |Tail| = 2.
 - DEL: Eliminate all ϵ -rules ($A \rightarrow \epsilon$) not involving the start variable.
 - UNIT: Eliminate all unit rules $(A \rightarrow B)$.

 $S' \rightarrow S$ $S \rightarrow AX \mid BY \mid \epsilon$ $X \rightarrow SA; Y \rightarrow SB$ $A \rightarrow a; B \rightarrow b$ $S' \rightarrow S \mid \epsilon$ $S \rightarrow AX \mid BY$ $X \rightarrow SA \mid A; Y \rightarrow SB \mid B$ $A \rightarrow a; B \rightarrow b$

- The transformation is done in 5 steps:
 - START: Eliminate the start variable from the right-hand sides.
 - TERM: Eliminate right-hand sides with both variables and terminals.
 - BIN: Eliminate right-hand sides with more than 2 variables.
 - DEL: Eliminate all ϵ -rules ($A \rightarrow \epsilon$) not involving the start variable.
 - For each occurrence of an A on the right-hand side:
 - Add a new rule with that occurrence deleted.
 - UNIT: Eliminate all unit rules $(A \rightarrow B)$.

 $S' \rightarrow S \mid \epsilon$ $S \rightarrow AX \mid BY$ $X \rightarrow SA \mid A; Y \rightarrow SB \mid B$ $A \rightarrow a; B \rightarrow b$ $S' \rightarrow AX \mid BY \mid \epsilon$ $S \rightarrow AX \mid BY$ $X \rightarrow SA \mid a; Y \rightarrow SB \mid b$ $A \rightarrow a; B \rightarrow b$

- The transformation is done in 5 steps:
 - START: Eliminate the start variable from the right-hand sides.
 - TERM: Eliminate right-hand sides with both variables and terminals.
 - BIN: Eliminate right-hand sides with more than 2 variables.
 - DEL: Eliminate all ϵ -rules ($A \rightarrow \epsilon$) not involving the start variable.
 - UNIT: Eliminate all unit rules $(A \rightarrow B)$.
 - Whenever $B \rightarrow v$ appears, add a rule $A \rightarrow v$.

• The transformation is done in 5 steps:

- START: Eliminate the start variable from the right-hand sides.
- TERM: Eliminate right-hand sides with both variables and terminals.
- BIN: Eliminate right-hand sides with more than 2 variables.
- DEL: Eliminate all ϵ -rules ($A \rightarrow \epsilon$) not involving the start variable.

- UNIT: Eliminate all unit rules $(A \rightarrow B)$.
- More details and time analysis are covered in the textbook and the paper.
 - "To CNF or not to CNF? An Efficient Yet Presentable Version of the CYK Algorithm"

- Given a CFG G in CNF and an input string w of length n.
- Exploit the properties of CNF: $A \rightarrow BC$ or $A \rightarrow a$; $S \rightarrow \epsilon$ is allowed.
 - Supposed that the input string can be generated from G...
 - If a string w is ϵ , then there exists a rule $S \rightarrow \epsilon$.
 - If a string w of length 1 can be derived from a variable A,
 - then there exists a rule $A \rightarrow w$.
 - If a string w of length ≥ 2 can be derived from a variable A...
 - then there exists a rule $A \rightarrow BC$ such that
 - *B* derives the substring w_{front} (\leftarrow A smaller problem)
 - *C* derives the substring w_{back} (\leftarrow A smaller problem)
 - where $w = w_{front} + w_{back}$ (string concatenation)

- Exploit the properties of CNF: $A \rightarrow BC$ or $A \rightarrow a$; $S \rightarrow \epsilon$ is allowed.
 - If a string w of length ≥ 2 can be derived from a variable A...
 - Then there exists a rule $A \rightarrow BC$ such that
 - *B* derives the substring w_{front} (\leftarrow A smaller problem)
 - C derives the substring w_{back} (\leftarrow A smaller problem)
 - where $w = w_{front} + w_{back}$ (string concatenation)
 - Where should we split w into w_{front} and w_{back} ?
 - We need to try every possible partitions.
 - Good! We reduce a big problem into two smaller problems!
 - Top-down Approach: We could recursively solve the problem now.

• Bottom-up Approach:

- If we know which variables generate all substrings of the input up to length k, can we know which variable generates a particular substring of length k + 1?
 YES!
 - Split a substring of length k + 1 into two non-empty pieces (there are k possible ways).
 - For each rule of form $A \rightarrow BC$:
 - Check whether *B* can generate the first piece of length $p \le k$.
 - Check whether C can generate the second piece of length $k + 1 p \le k$.
 - If so, then A can generate this substring of length k + 1.
 - Now we just check every possible substring of length k + 1.

• Bottom-up Approach:

- If we know which variables generate all substrings of the input up to length k, we know which variable generates a particular substring of length k + 1?
- By induction, we know which variables generate the substring of length *n*.
 - Substring of length n is just the input string.
 - If those variables contain the start variable S, then $w \in L(G)$.

- Input = $\langle G_{CNF} = (V, \Sigma, R, S), w = \sigma_1 \sigma_2 \dots \sigma_n \rangle$; Output = accept or reject.
- $Table = n \times n$ cells
 - where Table[i, j] stores a set of variables that can generate the substring $\sigma_i \sigma_{i+1} \dots \sigma_j$ $(i \leq j)$.
- If w is empty, if $S \rightarrow \epsilon$ exists then *accept* else *reject*.
- For i = 1 ... n:
 - For each variable A: If $A \rightarrow \sigma_i$ exists, then insert A into Table[i, i].
- For l = 2 ... n:
 - For $i = 1 \dots (N l + 1)$:
 - Let j = i + l 1; For $k = i \dots (j 1)$:
 - For each rule $A \rightarrow BC$: If Table[i, k] contains B and Table[k + 1, j] contains C, then insert A into Table[i, j].
- If *Table*[1, *n*] contains *S* then accept else reject.

Parsing Part 2 Practical Parsers

- The standard CYK algorithm only tells us whether an input string can be generated.
- Sometimes, we also want to know *how a string is generated*.
 - e.g., A compiler needs to convert the source code to an abstract syntax tree so that it can perform type checking and produce the assembly code.
 - i.e., Search for the derivation from *S* to the input string *w*.

Parsing Part 2 Parser Types

Top-down Parsers

- Build a derivation from the start variable to the input string.
- At each step, the parser selects a variable A and replaces the variable with the right-hand side of the rule $A \rightarrow v$.

Bottom-up Parsers

- Build a derivation from the input string back to the start variable.
- At each step, the parser identifies a substring v that matches the righthand side of a rule $A \rightarrow v$ and replaces the substring with the variable.

Parsing Part 2 Top-down Parsers

- Begin with the start variable...
 - At each step, the parser selects a variable and replaces the variable with the right-hand side of the rule.
 - Keep expanding the parse tree until the leaves match the input string.

• Example with input string *bacab*:

- Derivation: $S \Rightarrow d_1 \Rightarrow d_2 \Rightarrow \dots \Rightarrow d_{n-1} \Rightarrow d_n = bacab$
- Grammar: $S \rightarrow b \land C \ b$; $A \rightarrow aA \mid c$; $C \rightarrow cC \mid a$
- $d_i = baACb$, so d_{i+1} can be one of:
 - $baaACb (A \rightarrow aA)$
 - $bacCb(A \rightarrow c)$
 - $baAcCb(C \rightarrow cC)$
 - $baAab(C \rightarrow a)$

Parsing Part 2 Parser Types

Top-down Parsers

- Recursive descent parsers (with backtracking)
- Predictive parsers: LL(k) parsers (without backtracking)
 - Read the input Left to right; Build Leftmost derivation; Peek at most *k* symbols.

Bottom-up Parsers

- Shift-reduce parsers (without backtracking)
- *LR*(*k*) parsers (without backtracking)
 - Read the input Left to right; Build Rightmost derivation in reverse; Peek at most *k* symbols.

Parsing Part 2 *LL*(1) Parser – A Quick Glance

Peek the next symbol is sufficient to choose the correct production rule

- $S \rightarrow aP \mid bQ$
- Supposed that the parser is parsing the variable *S*.
 - If the next symbol is *a*, the parser consumes *a* and starts to parse the variable *P*.
 - If the next symbol is b, the parser consumes b and starts to parse the variable Q.
- Constraints on the context free grammar
 - The constrained grammar is known as LL(1) grammar.
 - The first symbol of all strings derived from a variable must be unique.
 - $S \rightarrow aP \mid bQ \mid aR$

Parsing Part 2 LL(1) Parser – Constraints

Constraints on the context free grammar

- The constrained grammar is known as LL(1) grammar.
- The first symbol of all strings derived from a variable must be unique.
 - Problematic 🔅:
 - $S \rightarrow aP \mid bQ \mid aR$
 - Fixed ©:
 - $S \rightarrow aX \mid bQ$
 - $X \rightarrow Q \mid R$
 - $Q \rightarrow c \mid q$
 - $R \rightarrow d \mid r$

Parsing Part 2 *LL*(1) Parser – Constraints

Constraints on the context free grammar

- The constrained grammar is known as LL(1) grammar.
- The first symbol of all strings derived from a variable must be unique.
- Left recursion is not allowed.
 - $E \rightarrow E + T \mid T$
 - $T \to T \times n \mid n$
 - When the parser is parsing *E*...
 - It needs to parse E, then +, and finally T.
 - It needs to parse *E*, ...
 - Stack overflow.

Parsing Part 2 *LL*(1) Parser – Constraints

Constraints on the context free grammar

- The constrained grammar is known as LL(1) grammar.
- The first symbol of all strings derived from a variable must be unique.
- Left recursion is not allowed.
 - $E \rightarrow E + T \mid T$
 - $T \to T \times n \mid n$
- Left recursions removed:
 - $E \rightarrow TZ; Z \rightarrow + E \mid \epsilon$
 - $T \rightarrow nR; R \rightarrow \times T \mid \epsilon$

Parsing Part 2 *LL*(1) Parser – JavaCC Example

- Generate a parser for the grammar:
 - $E \rightarrow T + E \mid T E \mid T$

- $T \rightarrow n \times T \mid n$
- $E \rightarrow T((+|-)T) *$
- $T \rightarrow P (\times P) *$
- $P \rightarrow n$

Context Free Grammar Summary

The Basics

- Syntax: $A \rightarrow w$
- Formal Definition: $G = (V, \Sigma, R, S)$
- Derivation: $S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \dots \Rightarrow w_n$; $S \Rightarrow^* w_n$
 - Leftmost Derivation versus Rightmost Derivation
 - Ambiguous Grammar
 - Parse Tree: Visual Derivations

Context Free Grammar Summary

Parsing

- Pushdown Automaton: Finite State Automaton + Stack
- Chomsky Normal Form: Constraints and Transformations
- Cocke-Younger-Kasami Algorithm (CYK Algorithm)
- Top-Down Parsing versus Bottom-Up Parsing
 - Recursive Descent Parsers
 - *LL*(*k*) Parsers
 - *LL*(1) Parsers: Constraints and Solutions

Context Free Grammar Questions?

Thanks for joining today

© Any Questions?

Context Free Grammar References & Notes

- "Three models for the description of language"
 - Noam Chomsky (1956), IRE Transactions on Information Theory.
- "To CNF or not to CNF? An Efficient Yet Presentable Version of the CYK Algorithm"
 - Martin Lange, Hans Leiß (2009), Informatica Didactica.
- "Introduction to the Theory of Computation"
 - Section 2.1 and Section 2.2: Basics of CFG and PDA.
 - Chapter 7: Section 7.2 Theorem 7.16: The CYK Algorithm.

Context Free Grammar References & Notes

- "Modern Compiler Implementation in Java"
 - Second Edition, Andrew Appel, 2002
- "Comparison of parser generators Deterministic CFG"
 - <u>https://en.wikipedia.org/wiki/Comparison_of_parser_generators#Deterministic_</u> context-free_languages
- "JavaCC Parser Generator"
 - https://javacc.github.io/javacc/