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Information

• Different definitions, depending on:


• The kind of entity whose information content we are trying to measure.


• What are we trying to quantify the information content for?


• We could measure the amount of information coming from a “communication 
channel” (Entropy):


• Assume it produces 2 messages: , which means “hello”, and , 
which means “goodbye”. Then the amount of information that this channel 
can produce is 1 bit.
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Information of an Object

• A quantity of information contained in an object is the size of the object’s smallest 
description.


• Description is a precise and unambiguous characterization of the object, from which it 
can be recreated.


• “01010101010101010101”


• = “01” * 10


• “1101010001”


• = “1101010001”


• Your DNA: 3 million nucleotides (ATCG letters) vs. 37.2 trillion cells.



Characterization of Description Procedure

• One way to produce a description of a binary string  is by a corresponding 
Turing machine  , producing  on blank input.


• The encoding  itself is a description of .


• Wasteful: for a string of size , we would need  states and as many rows 
in the transition table.


• Example: a long string of 1’s. 
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A Shorter Description Procedure

• Characterization of a string  is a Turing machine  and a binary input  to .


• The length of the description is the length of the string , which can be 
further simplified to .


• Let  be a string of  consecutive 1s,  be a TM that copies the input, and 
 be a string of  consecutive 1s. Then  for  large 

enough. 


• The minimal description  of a string  is then the shortest string .
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Minimal Description Length

• The minimal description  of a string  is then the shortest string  
such that the TM  halts on input  with  on the tape.


• The descriptive complexity (Kolmogorov complexity) of , written , is 
the length of the minimal description .
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Properties of KC [1]

• Theorem 1. 


• Consider a TM  that halts immediately after it starts. Then the tape remains unchanged. 
Let .


• Theorem 2. 


• Consider  as a minimal description of  and a Turing machine  that 


• 1. Runs  on , which produces . 


• 2. Doubles the input on the tape to be 


• This gives the description of  as , and .
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Properties of KC [2]

• Theorem 3. 


• Consider a TM  breaking down its input  into 2 parts. The first part of 
 is a doubled , which is terminated by 01 and then followed by 

. Then run  to obtain . Since  is doubled, we have:
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Optimality 

• Let  be a computable function. A minimal description of  
with respect to , ,  is the smallest string  s.t. . Let 

.


• Theorem 4. For any description language  there exists a constant  depending 
only on  such that 


• 


• Take any description language  and consider the TM , which given an 
input , prints Then .

p : {0,1}* → {0,1}* x
p dp(x) s p(s) = x

Kp(x) = |dp(x) |

p c
p

∀x, K(x) ≤ Kp(x) + c

p M
w p(w) . |d(x) | = |⟨M⟩ | + |ds(x) |



Incompressibility of Some Strings 

• Let  be a string, and a constant . Then  is -compressible if and only if 


• 


• If it is not -compressible, it is said to be -incompressible. Further, if it is 
incompressible by 1, it is called incompressible.
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Incompressibility of Some Strings 

• Theorem. The proportion of -compressible strings of length  is at most .


• 


• 


• 


• The proportion of strings 10-compressible length-20 strings is at most .
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Computability of Kolmogorov complexity

• Theorem:  is uncomputable.


• Assume there is a TM  s.t.  for any binary string . Pick  such that 
.


• Let  be a program that generates the first binary string  s.t. : just iterate over all binary 
strings in lexicographic order, and pick the first one of required complexity (by applying ).


• What is ? It is , where  is the number of bits to write the number , and 
 is the length of the rest of the program. 


• Clearly,  is a description of , so .


• But also, , which is a contradiction!
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The Halting Problem

• Theorem: If  is decidable, then  is 
computable.


• Assume there is a TM  that decides . 


• Now, iterate over all possible  in lexicographic order. 


• If  does not halt on those, continue. If it halts, check if  produces  on 
input .

HALTTM = {⟨M, w⟩ |M halts on w} K(x)

N HALTTM

⟨M, w⟩

N M x
w
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