Kolmogorov-Chaitin Complexity

 CPSC 501
Information

- Different definitions, depending on:
- The kind of entity whose information content we are trying to measure.
- What are we trying to quantify the information content for?
- We could measure the amount of information coming from a "communication channel" (Entropy):
- Assume it produces 2 messages: 0110, which means "hello", and 1110 , which means "goodbye". Then the amount of information that this channel can produce is 1 bit.

Information of an Object

- A quantity of information contained in an object is the size of the object's smallest description.
- Description is a precise and unambiguous characterization of the object, from which it can be recreated.
-"01010101010101010101"
- = "01" * 10
- "1101010001"
- = "1101010001"
- Your DNA: 3 million nucleotides (ATCG letters) vs. 37.2 trillion cells.

Characterization of Description Procedure

- One way to produce a description of a binary string x is by a corresponding Turing machine M, producing x on blank input.
- The encoding $\langle M\rangle$ itself is a description of x.
- Wasteful: for a string of size n, we would need n states and as many rows in the transition table.
- Example: a long string of 1 's.

A Shorter Description Procedure

- Characterization of a string x is a Turing machine M and a binary input w to M.
- The length of the description is the length of the string $\langle M, w\rangle$, which can be further simplified to $\langle M\rangle w$.
- Let x be a string of n consecutive $1 \mathrm{~s}, M$ be a TM that copies the input, and w be a string of $\frac{n}{2}$ consecutive 1 s . Then $\langle M, w\rangle=\frac{n}{2}+c<n$ for n large enough.
- The minimal description $d(x)$ of a string x is then the shortest string $\langle M\rangle w$.

Minimal Description Length

- The minimal description $d(x)$ of a string x is then the shortest string $\langle M\rangle w$ such that the TM M halts on input w with x on the tape.
- The descriptive complexity (Kolmogorov complexity) of x, written $K(x)$, is the length of the minimal description $|d(x)|$.

Properties of KC [1]

- Theorem 1. $\exists c \in \mathbb{N}, \forall x \in\{0,1\}^{*}, K(x) \leq|x|+c$
- Consider a TM M that halts immediately after it starts. Then the tape remains unchanged. Let $\langle M\rangle=c$.
- Theorem 2. $\exists c \in \mathbb{N}, \forall x \in\{0,1\}^{*}, K(x x) \leq K(x)+c$
- Consider $d(x)=\langle N, w\rangle$ as a minimal description of x and a Turing machine M that
- 1. Runs N on w, which produces x.
- 2. Doubles the input on the tape to be $x x$.
- This gives the description of $x x$ as $\langle M\rangle d(x)$, and $\langle M\rangle d(x)=|\langle M\rangle|+|d(x)|=c+K(x)$.

Properties of KC [2]

- Theorem 3. $\exists c \in \mathbb{N}, \forall x, y \in\{0,1\}^{*}, K(x y) \leq 2 K(x)+K(y)+c$
- Consider a TM M breaking down its input w into 2 parts. The first part of w is a doubled $d(x)$, which is terminated by 01 and then followed by $d(y)$. Then run M to obtain $x y$. Since $d(x)$ is doubled, we have:
- $|\langle M, w\rangle|=|\langle M\rangle|+2 d(x)+d(y)=c+2 K(x)+K(y)$

Optimality

- Let $p:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be a computable function. A minimal description of x with respect to $p, d_{p}(x)$, is the smallest string s s.t. $p(s)=x$. Let $K_{p}(x)=\left|d_{p}(x)\right|$.
- Theorem 4. For any description language p there exists a constant c depending only on p such that
- $\forall x, K(x) \leq K_{p}(x)+c$
- Take any description language p and consider the TM M, which given an input w, prints $p(w)$. Then $|d(x)|=|\langle M\rangle|+\left|d_{s}(x)\right|$.

Incompressibility of Some Strings

- Let x be a string, and a constant c. Then x is c-compressible if and only if
- $K(x) \leq|x|-c$
- If it is not c-compressible, it is said to be c-incompressible. Further, if it is incompressible by 1 , it is called incompressible.

Incompressibility of Some Strings

- Theorem. The proportion of c-compressible strings of length n is at most $\frac{1}{2^{c}}$.
- $\frac{|\{x: K(x) \leq|x|-c,|x|=n\}|}{|\{x:|x|=n\}|}$
- $=\frac{|\{x: K(x) \leq|x|-c,|x|=n\}|}{2^{n}}$
- $\leq \frac{2^{n-c}}{2^{n}}=\frac{1}{2^{c}}$
. The proportion of strings 10 -compressible length- 20 strings is at most $\frac{1}{1024}$.

Computability of Kolmogorov complexity

- Theorem: $K(x)$ is uncomputable.
- Assume there is a TM p s.t. $p(x)=K(x)$ for any binary string x. Pick $d \in \mathbb{N}$ such that $d>\log d+|p|+c$.
- Let q be a program that generates the first binary string y s.t. $K(y)=d$: just iterate over all binary strings in lexicographic order, and pick the first one of required complexity (by applying p).
- What is $|q|$? It is $|p|+\log d+c$, where $\log d$ is the number of bits to write the number d, and c is the length of the rest of the program.
- Clearly, q is a description of y, so $d=K(y) \leq|q|=|p|+\log d+c$.
- But also, $d=K(y)>\log d+|p|+c$, which is a contradiction!

The Halting Problem

- Theorem: If $H A L T_{T M}=\{\langle M, w\rangle \mid M$ halts on $w\}$ is decidable, then $K(x)$ is computable.
- Assume there is a TM N that decides $H A L T_{T M}$.
- Now, iterate over all possible $\langle M, w\rangle$ in lexicographic order.
- If N does not halt on those, continue. If it halts, check if M produces x on input w.

References

- Peter Grunwald and Paul Vitanyi. Shannon Information and Kolmogorov Complexity. https://homepages.cwi.nl/~paulv/papers/info.pdf
- Michael Sipser. Introduction to the Theory of Computation. 3rd ed.
- Shai Ben-David. Lecture 22 of Logic of Computation, CS245, Fall 2015, University of Waterloo.

