Kolmogorov-Chaitin Complexity CPSC 501

Grigorii Guz, 07.12.2021

Information

- Different definitions, depending on:
 - The kind of entity whose information content we are trying to measure.
 - What are we trying to quantify the information content for?
- We could measure the amount of information coming from a "communication channel" (Entropy):
 - Assume it produces 2 messages: 0110, which means "hello", and 1110, which means "goodbye". Then the amount of information that this channel can produce is 1 bit.

Information of an Object

- A quantity of information contained in an object is the size of the object's smallest description.
 - can be recreated.
 - "010101010101010101010101"
 - = "01" * 10
 - "1101010001"
 - = "1101010001"
 - Your DNA: 3 million nucleotides (ATCG letters) vs. 37.2 trillion cells.

• Description is a precise and unambiguous characterization of the object, from which it

Characterization of Description Procedure

- One way to produce a description of a binary string x is by a corresponding Turing machine M, producing x on blank input.
 - The encoding $\langle M \rangle$ itself is a description of *x*.
 - Wasteful: for a string of size *n*, we would need *n* states and as many rows in the transition table.
 - Example: a long string of 1's.

A Shorter Description Procedure

- Characterization of a string x is a Turing machine M and a binary input w to M. • The length of the description is the length of the string $\langle M, w \rangle$, which can be
- further simplified to $\langle M \rangle w$.
 - Let *x* be a string of *n* consecutive 1s, *M* be a TM that copies the input, and *w* be a string of $\frac{n}{2}$ consecutive 1s. Then $\langle M, w \rangle = \frac{n}{2} + c < n$ for *n* large enough.
- The minimal description d(x) of a string x is then the shortest string $\langle M \rangle w$.

Minimal Description Length

- such that the TM M halts on input w with x on the tape.
- the length of the minimal description |d(x)|.

• The *minimal description* d(x) of a string x is then the shortest string $\langle M \rangle w$

• The descriptive complexity (Kolmogorov complexity) of x, written K(x), is

Properties of KC [1]

- Theorem 1. $\exists c \in \mathbb{N}, \forall x \in \{0,1\}^*, K(x) \le |x| + c$
 - Consider a TM M that halts immediately after it starts. Then the tape remains unchanged. Let $\langle M \rangle = c$.
- Theorem 2. $\exists c \in \mathbb{N}, \forall x \in \{0,1\}^*, K(xx) \leq K(x) + c$
 - Consider $d(x) = \langle N, w \rangle$ as a minimal description of x and a Turing machine M that
 - 1. Runs N on w, which produces x.
 - 2. Doubles the input on the tape to be xx.
 - This gives the description of xx as $\langle M \rangle d(x)$, and $\langle M \rangle d(x) = |\langle M \rangle| + |d(x)| = c + K(x)$.

Properties of KC [2]

- Theorem 3. $\exists c \in \mathbb{N}, \forall x, y \in \{0,1\}^*, K(xy) \le 2K(x) + K(y) + c$
 - - $|\langle M, w \rangle| = |\langle M \rangle| + 2d(x) + d(y) = c + 2K(x) + K(y)$

• Consider a TM M breaking down its input w into 2 parts. The first part of w is a doubled d(x), which is terminated by 01 and then followed by d(y). Then run M to obtain xy. Since d(x) is doubled, we have:

Optimality

- Let $p: \{0,1\}^* \to \{0,1\}^*$ be a computable function. A minimal description of x with respect to p, $d_p(x)$, is the smallest string s s.t. p(s) = x. Let $K_p(x) = |d_p(x)|.$
- Theorem 4. For any description language p there exists a constant c depending only on *p* such that
 - $\forall x, K(x) \leq K_p(x) + c$
 - Take any description language p and consider the TM M, which given an input w, prints p(w). Then $|d(x)| = |\langle M \rangle| + |d_s(x)|$.

Incompressibility of Some Strings

- - $K(x) \leq |x| c$
- incompressible by 1, it is called *incompressible*.

• Let x be a string, and a constant c. Then x is c-compressible if and only if

• If it is not *c*-compressible, it is said to be *c*-incompressible. Further, if it is

Incompressibility of Some Strings

$$\frac{|\{x: K(x) \le |x| - c, |x| = n\}|}{|\{x: |x| = n\}|}$$

$$= \frac{|\{x: K(x) \le |x| - c, |x| = n\}|}{2^n}$$

$$\le \frac{2^{n-c}}{2^n} = \frac{1}{2^c}$$

• The proportion of strings 10-compressible length-20 strings is at most $\frac{1024}{1024}$.

Computability of Kolmogorov complexity

- Theorem: K(x) is uncomputable.
 - Assume there is a TM p s.t. p(x) = K(x) for any binary string x. Pick $d \in \mathbb{N}$ such that $d > \log d + |p| + c.$
 - Let q be a program that generates the first binary string y s.t. K(y) = d: just iterate over all binary strings in lexicographic order, and pick the first one of required complexity (by applying p).
 - What is |q|? It is $|p| + \log d + c$, where $\log d$ is the number of bits to write the number d, and c is the length of the rest of the program.
 - Clearly, q is a description of y, so d = K(y)
 - But also, $d = K(y) > \log d + |p| + c$, which is a contradiction!

$$| \leq |q| = |p| + \log d + c.$$

The Halting Problem

- Theorem: If $HALT_{TM} = \{ \langle M, w \rangle | M \text{ halts on } w \}$ is decidable, then K(x) is computable.
 - Assume there is a TM N that decides $HALT_{TM}$.
 - Now, iterate over all possible $\langle M, w \rangle$ in lexicographic order.
 - If N does not halt on those, continue. If it halts, check if M produces x on input w.

References

- Peter Grunwald and Paul Vitanyi. Shannon Information and Kolmogorov Complexity. https://homepages.cwi.nl/~paulv/papers/info.pdf
- Michael Sipser. Introduction to the Theory of Computation. 3rd ed.
- Shai Ben-David. Lecture 22 of Logic of Computation, CS245, Fall 2015, University of Waterloo.