Quantum Computers Sometimes Go Zoom

Sophie MacDonald
Mia Kramer

December 2, 2021
\triangleright Qubits are the quantum version of bits; they are two-dimensional rather than two-valued
\triangleright Quantum states are vectors
\triangleright We can visualize states using a Bloch sphere
\triangleright Adding a qubit doubles our dimension
\triangleright Examples of quantum operations include rotations on the Bloch sphere like the HADAMARD operation, and operations like CNOT
\triangleright The Deutsch-Jozsa problem requires $\leq 2^{n-1}+1$ evaluations of f on a Turing machine, but only one on a quantum computer
\triangleright Some efficient quantum algorithms exist, but quantum computers are only faster when such an algorithm can be found
\triangleright Generally, if a classical system has n STATES, a corresponding quantum one has an n-dimensional STATE SPACE
\triangleright A bit has two states and a Qubit has a 2D state space
\triangleright Since it has two dimensions, we might write it as a 2-vector $\left[\begin{array}{ll}a & b\end{array}\right]^{\mathrm{T}}$
\triangleright But note that a and b are complex-of the form $\alpha+\beta i$
\triangleright Instead of working with 0 and 1, we have a pair of orthogonal vectors $\widehat{0}$ and $\widehat{\mathbf{1}}$
\triangleright We'll choose those as our basis: $\widehat{\mathbf{0}}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\mathrm{T}} ; \widehat{1}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{\mathrm{T}}$
\triangleright Finally, we can multiply any state by a complex number without changing the "meaning" of the state
$\triangleright c(a \widehat{0}+b \widehat{1}) \equiv(a \widehat{0}+b \widehat{1})$
\triangleright Our states are two-dimensional but have complex components so it seems like we should have four degrees of freedom
\triangleright But, because of equivalence under multiplication by a complex scalar we're back down to two
\triangleright By convention, we normalize them so that $|a|^{2}+|b|^{2}=1$
\triangleright Since our DOF work out to angles, we can draw states on a sphere, the Bloch sphere
\triangleright But note here, opposite sides are orthogonal!

Quantum Operations
Nothing spooky here.
\triangleright Valid operations (other than measurement) are matrices
\triangleright One common single-qubit operation is the Hadamard one-a possible rotation on the Bloch sphere

\triangleright Another is the CNOT operation, the quantum version of XOR, which takes two bits and flips the second iff the first is 1
\triangleright When we add a bit to a system, we double the number of possible states
\triangleright So, when we add a qubit to a system, we double the number of dimensions
\triangleright For a single qubit, we had bases $\widehat{0}$ and $\widehat{1}$, and we're adding "another" $\widehat{0}$ and $\widehat{1}$
\triangleright So, our basis is $\left(\widehat{0}_{1} \otimes \widehat{0}_{2}\right),\left(\widehat{0}_{1} \otimes \hat{1}_{2}\right),\left(\hat{\mathbf{1}}_{1} \otimes \widehat{\mathrm{O}}_{2}\right),\left(\hat{\mathrm{I}}_{1} \otimes \widehat{\mathrm{I}}_{2}\right)$
\triangleright Remember, these are just vectors: $\left(\widehat{\mathbf{0}}_{1} \otimes \widehat{\mathbf{O}}_{2}\right)=\left[\begin{array}{cccc}1 & 0 & 0 & 0\end{array}\right]^{\mathrm{T}}$

The Deutsch-Jozsa Problem
Don't worry, I couldn't pronounce it at first either.
\triangleright Given a function $f: \mathbb{B}^{n} \rightarrow \mathbb{B}$, which is either
\triangleright CONSTANT (the same for all inputs) or
\triangleright BALANCED (0 for half the input domain and 1 for the rest), determine whether it's constant or balanced.
\triangleright Easy to see in $n=1$ case, the best classical solution requires two evaluations
\triangleright BALANCED? $(f)=f(0) \underline{\vee} f(1)$
\triangleright For larger n, in the worst case we need to test more than half the domain: $2^{n-1}+1$ evaluations
\triangleright Best case still requires two

The Quantum Solution
Deutsch's Algorithm, Part I.
\triangleright We need two qubits, we'll initialize the first $\left(q_{1}\right)$ to $\widehat{0}$ and the second $\left(q_{2}\right)$ to $\widehat{1}$
\triangleright We'll write the state of q_{i} as $\widehat{\mathbf{q}}_{i}$
\triangleright Assumption: we are given a quantum implementation of f that takes us from the state $\widehat{\mathbf{q}}_{1} \otimes \widehat{\mathbf{q}}_{2}$ to $\widehat{\mathbf{q}}_{1} \otimes\left(\widehat{\mathbf{q}}_{2}\right.$ CNOT $\left.f\left(\widehat{\mathbf{q}}_{1}\right)\right)$
\triangleright This is not just a classic oracle that tells us the function value!
\triangleright After initializing our qubits, we apply a Hadamard to both:

\triangleright We are now in the state $\frac{1}{2}\left(\left(\widehat{\mathbf{0}}_{1}+\widehat{\mathbf{1}}_{1}\right) \otimes\left(\widehat{\mathbf{0}}_{2}-\widehat{\mathbf{1}}_{2}\right)\right)$

The Quantum Solution
Deutsch's Algorithm, Part II.
\triangleright Now, we apply our implementation of f to our state

$$
\triangleright \frac{1}{2}\left(\left(\widehat{\boldsymbol{0}}_{1}+\hat{\mathbf{1}}_{1}\right) \otimes\left(\widehat{\boldsymbol{O}}_{2}-\widehat{\mathbf{1}}_{2}\right)\right)
$$

\triangleright This brings us to the state:

$$
\begin{aligned}
& \frac{1}{2}(\widehat{\mathbf{0}}_{1} \otimes(\underbrace{\left(f(0) \operatorname{NNOT} \widehat{\mathbf{0}}_{2}\right)-\left(f(0) \mathrm{CNOT} \widehat{\mathbf{1}}_{2}\right)}_{\widehat{0}_{2}-\widehat{\mathbf{1}}_{2} \text { if } f(0)=0, \widehat{\mathbf{1}}_{2}-\widehat{\mathbf{0}}_{2} \text { if } f(0)=1}) \\
& +\widehat{\mathbf{1}}_{1} \otimes(\underbrace{\left(f(1) \mathrm{CNOT} \widehat{\mathbf{0}}_{2}\right)-\left(f(1) \mathrm{CNOT} \widehat{\mathbf{1}}_{2}\right)}_{\widehat{\mathbf{0}}_{2}-\widehat{\mathbf{1}}_{2} \text { if } f(1)=0, \widehat{\mathbf{1}}_{2}-\widehat{\mathbf{0}}_{2} \text { if } f(1)=1})) \\
& =\frac{1}{2}\left((-1)^{f(0)} \widehat{\mathbf{0}}_{1} \otimes\left(\widehat{\mathbf{0}}_{2}-\widehat{\mathbf{1}}_{2}\right)+(-1)^{f(1)} \widehat{\mathbf{1}}_{1} \otimes\left(\widehat{\mathbf{0}}_{2}-\widehat{\mathbf{1}}_{2}\right)\right) \\
& =\frac{1}{2} \underbrace{(-1)^{f(0)}}_{\text {global phase }}\left(\widehat{\mathbf{0}}_{1}+(-1)^{f(0) \vee f(1)} \widehat{\mathbf{1}}_{1}\right) \otimes\left(\widehat{\mathbf{0}}_{2}-\widehat{\mathbf{1}}_{2}\right)
\end{aligned}
$$

The Quantum Solution
Deutsch's Algorithm, Part II.
\triangleright Example when $f \equiv 0$ (constant):
$\triangleright \frac{1}{2}\left(\widehat{\mathbf{0}}_{1}+(-1)^{0} \widehat{1}_{1}\right) \otimes\left(\widehat{\mathbf{0}}_{2}-\widehat{\mathbf{1}}_{2}\right)$
\triangleright Remember: ignore global phase
\triangleright When $f(x)=x$ (balanced):

$$
\triangleright \frac{1}{2}\left(\widehat{\mathbf{0}}_{1}+(-1)^{1} \widehat{\mathrm{I}}_{1}\right) \otimes\left(\widehat{\mathbf{0}}_{2}-\widehat{\mathbf{1}}_{2}\right)
$$

The Quantum Solution
Deutsch's Algorithm, Part III.
\triangleright We can always ignore global phase, and clearly the first qubit has the interesting information:

$$
\widehat{\mathbf{q}}_{1}=\frac{1}{\sqrt{2}}\left(\widehat{\mathbf{0}}+(-1)^{f(0) \underline{v} f(1) \widehat{\mathbf{1}}}\right)
$$

Now, we apply Hadamard one more time:

$$
\begin{aligned}
\Leftrightarrow & \frac{1}{2}\left(1+(-1)^{f(0) \vee f(1)}\right) \widehat{\mathbf{0}} \\
& +\left(1-(-1)^{f(0) \vee f(1)}\right) \widehat{\mathbf{1}}
\end{aligned}
$$

\triangleright Finally, we measure this qubit:
$\triangleright 1$ when $f(0) \underline{\vee}(1)=1$ (balanced)
$\triangleright 0$ when $f(0) \vee f(1)=0$ (constant)

The Quantum Solution
Deutsch's Algorithm, Part III.
\triangleright Example when $f(x)=$ false:

\triangleright When $f(x)=x$:

The Quantum Solution
Deutsch's Algorithm, in summary.
\triangleright We use two qubits of memory
\triangleright We transform them to not be in our standard $\widehat{0}, \hat{1}$ basis
\triangleright By using the properties of our quantum oracle, we are able to "transfer" all of the interesting information onto one qubit, and "discard" the rest as global phase
\triangleright Then, we can transform the interesting qubit back to a basis where we can perform a useful measurement

Quantum Mechanics It's not scary so long as you don't think about it as real.
\triangleright Lots to QM not discussed here
\triangleright In particular: quantum states are inherently fragile
\triangleright Classical bits have inherent noise-resistance from being binary
\triangleright Also easier to build error-correcting codes since there's only one type of error (bit flip)
\triangleright Some "spooky" terminology you may have heard:
\triangleright superposition refers to states that are not the basis states of interest (i.e. $\widehat{0}, \widehat{1}$ for us)
\triangleright ENTANGLED states can't be written as a simple product; consider $\frac{1}{\sqrt{2}}\left(\left(\widehat{\mathbf{0}}_{1} \otimes \widehat{\mathbf{0}}_{2}\right)+\left(\widehat{\mathrm{i}}_{1} \otimes \widehat{\mathrm{i}}_{2}\right)\right)$
\triangleright We can see that a quantum computer can be asymptotically faster... but only if you've designed a quantum algorithm
\triangleright Designing quantum algorithms is not easy!
\triangleright A quantum computer also cannot do anything a classical computer cannot
\triangleright Some other (more useful) quantum algorithms:
\triangleright Shor's Algorithm does integer factorization/discrete logarithm in polynomial time
\triangleright Grover's Algorithm searches an unsorted list in $O(\sqrt{n})$ time
\triangleright The Quantum Fourier Transform is exponentially faster than DFT
\triangleright In general, quantum computers will be exponentially faster at simulating quantum systems (think molecular reactions)
\triangleright References:
\triangleright Rapid solution of problems by quantum computation, Deutsch and Jozsat. 1992. Proceedings: Mathematical and Physical Sciences, Volume 439, Issue 1907, pp. 553-558.
\triangleright Quantum Algorithms Revisited, Cleve, Ekert, Macchiavello and Mosca. 1998. Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences Volume 454, Issue 1969.
\triangleright Further reading:
\triangleright Quantum Computation and Quantum Information, Nielsen and Chang. 2010.
\triangleright Quantum Computing Since Democritus, Scott Aaronson. Cambridge, 2013.

