
Quantum Computers Sometimes Go Zoom

Sophie MacDonald
Mia Kramer

December 2, 2021

Overview

▷ Qubits are the quantum version of bits; they are
two-dimensional rather than two-valued

▷ Quantum states are vectors

▷ We can visualize states using a Bloch sphere

▷ Adding a qubit doubles our dimension

▷ Examples of quantum operations include rotations on the Bloch
sphere like the Hadamard operation, and operations like
CNOT

▷ The Deutsch-Jozsa problem requires ≤ 2𝑛−1 + 1 evaluations of 𝑓
on a Turing machine, but only one on a quantum computer

▷ Some efficient quantum algorithms exist, but quantum
computers are only faster when such an algorithm can be found

2 / 16 Important terms will appear here

Bits to Qubits
States are vectors.

▷ Generally, if a classical system has 𝑛 states, a corresponding
quantum one has an 𝑛-dimensional state space

▷ A bit has two states and a qubit has a 2D state space
▷ Since it has two dimensions, we might write it as a 2-vector

[𝑎 𝑏]T

▷ But note that 𝑎 and 𝑏 are complex—of the form 𝛼 + 𝛽𝑖
▷ Instead of working with 0 and 1, we have a pair of orthogonal

vectors 0̂ and 1̂

▷ We’ll choose those as our basis: 0̂ = [1 0]T ; 1̂ = [0 1]T

▷ Finally, we can multiply any state by a complex number
without changing the “meaning” of the state

▷ 𝑐(𝑎0̂ + 𝑏1̂) ≡ (𝑎0̂ + 𝑏1̂)

3 / 16 state; qubit

Visualizing Quantum States
Featuring the strangest sphere you’ll ever encounter.

▷ Our states are two-dimensional but have complex components
so it seems like we should have four degrees of freedom

▷ But, because of equivalence under multiplication by a complex
scalar we’re back down to two

▷ By convention, we normalize them so that |𝑎|2 + |𝑏|2 = 1
▷ Since our DOF work out to angles, we can draw states on a

sphere, the Bloch sphere
▷ But note here, opposite sides are orthogonal!

0̂

1̂

(0̂ + 1̂)/√2

(0̂ + 𝑖1̂)/√2

4 / 16 Bloch sphere

Quantum Operations
Nothing spooky here.

▷ Valid operations (other than measurement) are matrices

▷ One common single-qubit operation is the Hadamard one—a
possible rotation on the Bloch sphere

0̂

1̂

(0̂ + 1̂)/√2
(0̂ − 1̂)/√2

▷ Another is the CNOT operation, the quantum version of XOR,
which takes two bits and flips the second iff the first is 1

5 / 16 Hadamard; CNOT

Multiple Qubits
The more the merrier?

▷ When we add a bit to a system, we double the number of
possible states

▷ So, when we add a qubit to a system, we double the number of
dimensions

▷ For a single qubit, we had bases 0̂ and 1̂, and we’re adding
“another” 0̂ and 1̂

▷ So, our basis is (0̂1 ⊗ 0̂2), (0̂1 ⊗ 1̂2), (1̂1 ⊗ 0̂2), (1̂1 ⊗ 1̂2)
▷ Remember, these are just vectors: (0̂1 ⊗ 0̂2) = [1 0 0 0]T

6 / 16 Kronecker product

The Deutsch-Jozsa Problem
Don’t worry, I couldn’t pronounce it at first either.

▷ Given a function 𝑓 ∶ 𝔹𝑛 → 𝔹, which is either
▷ constant (the same for all inputs) or
▷ balanced (0 for half the input domain and 1 for the rest),

determine whether it’s constant or balanced.
▷ Easy to see in 𝑛 = 1 case, the best classical solution requires two

evaluations
▷ BALANCED?(𝑓) = 𝑓 (0) ⊻ 𝑓 (1)

▷ For larger 𝑛, in the worst case we need to test more than half
the domain: 2𝑛−1 + 1 evaluations

▷ Best case still requires two

7 / 16 constant; balanced

The Quantum Solution
Deutsch’s Algorithm, Part Ⅰ.

▷ We need two qubits, we’ll initialize the first (𝑞1) to 0̂ and the
second (𝑞2) to 1̂

▷ We’ll write the state of 𝑞𝑖 as q̂𝑖

▷ Assumption: we are given a quantum implementation of 𝑓
that takes us from the state q̂1 ⊗ q̂2 to q̂1 ⊗ (q̂2 CNOT 𝑓 (q̂1))

▷ This is not just a classic oracle that tells us the function value!

▷ After initializing our qubits, we apply a Hadamard to both:

▷ We are now in the state 1
2 ((0̂1 + 1̂1) ⊗ (0̂2 − 1̂2))

8 / 16

The Quantum Solution
Deutsch’s Algorithm, Part Ⅱ.

▷ Now, we apply our implementation of 𝑓 to our state
▷ 1

2
((0̂1 + 1̂1) ⊗ (0̂2 − 1̂2))

▷ This brings us to the state:

1
2
(0̂1 ⊗ ((𝑓 (0) CNOT 0̂2) − (𝑓 (0) CNOT 1̂2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

0̂2−1̂2 if 𝑓 (0)=0, 1̂2−0̂2 if 𝑓 (0)=1

)

+ 1̂1 ⊗ ((𝑓 (1) CNOT 0̂2) − (𝑓 (1) CNOT 1̂2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
0̂2−1̂2 if 𝑓 (1)=0, 1̂2−0̂2 if 𝑓 (1)=1

))

= 1
2
((−1)𝑓 (0) 0̂1 ⊗ (0̂2 − 1̂2) + (−1)𝑓 (1) 1̂1 ⊗ (0̂2 − 1̂2))

= 1
2
(−1)𝑓 (0)⏟⏟⏟⏟⏟⏟⏟⏟⏟

global phase

(0̂1 + (−1)𝑓 (0)⊻𝑓 (1) 1̂1) ⊗ (0̂2 − 1̂2)

9 / 16

The Quantum Solution
Deutsch’s Algorithm, Part Ⅱ.

▷ Example when 𝑓 ≡ 0 (constant):
▷ 1

2
(0̂1 + (−1)0 1̂1) ⊗ (0̂2 − 1̂2)

▷ Remember: ignore global phase

▷ When 𝑓 (𝑥) = 𝑥 (balanced):
▷ 1

2
(0̂1 + (−1)1 1̂1) ⊗ (0̂2 − 1̂2)

10 / 16

The Quantum Solution
Deutsch’s Algorithm, Part Ⅲ.

▷ We can always ignore global phase, and clearly the first qubit
has the interesting information:

q̂1 =
1
√2

(0̂ + (−1)𝑓 (0)⊻𝑓 (1) 1̂)

Now, we apply Hadamard one more time:

⤇ 1
2
(1 + (−1)𝑓 (0)⊻𝑓 (1)) 0̂

+ (1 − (−1)𝑓 (0)⊻𝑓 (1)) 1̂

▷ Finally, we measure this qubit:
▷ 1 when 𝑓 (0) ⊻ 𝑓 (1) = 1 (balanced)
▷ 0 when 𝑓 (0) ⊻ 𝑓 (1) = 0 (constant)

11 / 16

The Quantum Solution
Deutsch’s Algorithm, Part Ⅲ.

▷ Example when 𝑓 (𝑥) = false:

▷ When 𝑓 (𝑥) = 𝑥:

12 / 16

The Quantum Solution
Deutsch’s Algorithm, in summary.

▷ We use two qubits of memory

▷ We transform them to not be in our standard 0̂, 1̂ basis

▷ By using the properties of our quantum oracle, we are able to
“transfer” all of the interesting information onto one qubit, and
“discard” the rest as global phase

▷ Then, we can transform the interesting qubit back to a basis
where we can perform a useful measurement

13 / 16

Quantum Mechanics
It’s not scary so long as you don’t think about it as real.

▷ Lots to QM not discussed here
▷ In particular: quantum states are inherently fragile

▷ Classical bits have inherent noise-resistance from being binary
▷ Also easier to build error-correcting codes since there’s only one

type of error (bit flip)

▷ Some “spooky” terminology you may have heard:
▷ superposition refers to states that are not the basis states of

interest (i.e. 0̂, 1̂ for us)
▷ entangled states can’t be written as a simple product; consider

1
√2
((0̂1 ⊗ 0̂2) + (1̂1 ⊗ 1̂2))

▷ We can see that a quantum computer can be asymptotically
faster… but only if you’ve designed a quantum algorithm

▷ Designing quantum algorithms is not easy!
▷ A quantum computer also cannot do anything a classical

computer cannot

14 / 16 spooky; superposition; entanglement

Quantum Computers
They can be faster, but it’s not easy.

▷ Some other (more useful) quantum algorithms:
▷ Shor’s Algorithm does integer factorization/discrete logarithm

in polynomial time
▷ Grover’s Algorithm searches an unsorted list in 𝑂(√𝑛) time
▷ The Quantum Fourier Transform is exponentially faster than

DFT
▷ In general, quantum computers will be exponentially faster at

simulating quantum systems (think molecular reactions)

15 / 16

References & Further Reading
Quantum mechanics is really cool.

▷ References:
▷ Rapid solution of problems by quantum computation, Deutsch and

Jozsat. 1992. Proceedings: Mathematical and Physical Sciences,
Volume 439, Issue 1907, pp. 553-558.

▷ Quantum Algorithms Revisited, Cleve, Ekert, Macchiavello and
Mosca. 1998. Proceedings of the Royal Society, Series A:
Mathematical, Physical and Engineering Sciences Volume 454,
Issue 1969.

▷ Further reading:
▷ Quantum Computation and Quantum Information, Nielsen and

Chang. 2010.
▷ Quantum Computing Since Democritus, Scott Aaronson.

Cambridge, 2013.

16 / 16

