INDIVIDUAL HOMEWORK 5, CPSC 421/501, FALL 2021

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2021. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:

- (1) You must justify all answers; no credit is given for a correct answer without justification.
- (2) Proofs should be written out formally.
- (3) Homework that is difficult to read may not be graded.
- (4) You may work together on homework in groups of up to four, but you must write up your own solutions individually and must acknowl-edge with whom you worked. You must also acknowledge any sources you have used beyond the textbook and two articles on the class website.
- (1) To be handed in on Individual Homework 6, NOT ON HOMEWORK 5:
 (a) Describe in 15–35 English words an algorithm, suitable for implementation on a DFA, that recognizes the language

 $L_1 = \Big\{ w \in \{a, b\}^* \mid w \neq \epsilon \text{ and } w \text{ begins and ends with the same symbol} \Big\}.$

This description should be "high level," e.g., with no technical details about the specific states of the DFA you intend to implement.

- (b) Describe a DFA that recognizes L_1 above, based on your answer to part (a).
- (c) **Briefly describe** how your DFA works.
- (d) Based on the above, describe a DFA that recognizes

 $L_2 = \Big\{ w \in \{a, b\}^* \, | \, w = \epsilon \text{ or } w \text{ begins and ends with the same symbol} \Big\},$

(2) Build an NFA with three states that recognizes the language $L = \{aa, aaa, ab\}^*$ and explain how your NFA works.

and **describe in 12 English words or fewer** how you built this DFA from the DFA in part (b).

Research supported in part by an NSERC grant.

JOEL FRIEDMAN

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

V6T 1Z4, CANADA. E-mail address: jf@cs.ubc.ca URL: http://www.cs.ubc.ca/~jf

 $\mathbf{2}$