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Please note:

(1) You must justify all answers; no credit is given for a correct answer without
justification.

(2) Proofs should be written out formally.
(3) Homework that is difficult to read may not be graded.
(4) You may work together on homework in groups of up to four, but you

must submit a single homework as a group submission under
Gradescope.

———————————————————
These exercises use the terms injection, bijection, surjection, and, at times, (one-

to-one) correspondence (a synonym for bijection); these are terms are defined just
below Definition 4.2 (page 203) of [Sip]. In addition, these exercises use the O( )
“big-oh” and o( ) “little-oh” notation in Section 7.1 (specifically pages 276–278 of
[Sip]), although likely you have seen this notation in a previous course on algorithms.

(1) Exercise 8.4.1 on the handout “Uncomputability OR Ruining the Suprises
in CPSC421/501.”

(2) Exercise 8.4.2 on the handout “Uncomputability OR Ruining the Suprises
in CPSC421/501.”

(3) Exercise 8.4.3 on the handout “Uncomputability OR Ruining the Suprises
in CPSC421/501.”

(4) Let Σ = {a} be an alphabet consisting of the single letter, a. Hence a
language over Σ is just subset of

Σ∗ = {ε, a1, a2, a3, . . .}

where ε = a0, as usual, denotes the empty string/word.
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(a) Let Z≥0 = {0, 1, 2, . . .} denote the non-negative integers. Briefly ex-
plain why the POWER(Z≥0) (i.e., the set of subsets of Z≥0) is in
one-to-one correspondence with set of languages over Σ, specifically
by the correspondence (i.e., bijection)

A : POWER(Z≥0)→ POWER(Σ∗)

given by
A(I) = {an | n ∈ I}.

For example,

A
(
{the positive, even integers}

)
= {a2, a4, a6, . . .},

and
A
(
{2, 14}

)
= {a2, a14}.

(b) Briefly explain why if I ⊂ Z≥0, then I is finite iff A(I) is finite, and
if so, then |I| = |A(I)|.

(c) We say that I ⊂ Z≥0 is eventually periodic if there exists n0 ∈ Z≥0

and p ∈ N such that for each integer n ≥ n0 we have

n ∈ I ⇐⇒ n+ p ∈ I,
i.e., n is in I iff (if and only if) n + p ∈ I. Briefly explain why the
following subsets of Z≥0 are eventually periodic:

(i) any finite subset of Z≥0;
(ii) the odd integers greater than 2021;
(iii) the natural numbers divisible by 4, except those divisible by 100

but not by 400 (these are, in a sense, the “leap years” in the
Gregorian calendar).

(d) In class (likely on Tuesday, October 5) we will explain why for all
I ⊂ Z≥0, I is eventually periodic iff A(I) is a regular language1. You
may assume this fact to solve the following exercises.

(i) Show that

{an | n is a positive integer that is not a power of 10}
is not a regular language.

(ii) Fix an L ⊂ Σ∗, and for n ∈ N let πL(n) denote the number of
words of length at most n. Show that if L ⊂ Σ∗ is an infinite
language for which πL(n) = o(n), then L is non-regular (i.e., not
regular).

(iii) Show that if

L = {a(n
2) | n ∈ N} = {a, a4, a9, a16, . . .}

then πL(n) = O(
√
n ); conclude that L above is non-regular.

(iv) It is well-known that if

L = {an | n is a prime number} = {a2, a3, a5, a7, a11, . . .}
then πL(n) = n/log(n) + o(n/ log(n)) (this is called the “Prime
Number Theorem”). Conclude that L above is non-regular.

1 You might think of why this is true: consider what a DFA, M = (Q,Σ, δ, q0, F ), “looks like”
with Σ = {a}: roughly speaking, it looks like a directed graph where each vertex has outdegree

equal to 1 (see [Sip], pages 12–13, for this terminology). What does such a DFA look like when
you draw it?
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