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Disclaimer: The material may sketchy and/or contain errors, which I will elabo-
rate upon and/or correct in class. For those not in CPSC 421/501: use this material
at your own risk. . .

The reference [Sip] is to the course textbook, Introduction to the Theory of
Computation by Michael Sipser, 3rd Edition.

This article assumes you are familiar with the material in Chapter 0 of [Sip].
In addition, we assume that you are you have seen some analysis of algorithms,
including big-Oh and little-oh notation (e.g., n log2 n+ 3n+ 5 = n log2 n+O(n)).

In Appendix A and B we include some material handed out in the Fall 2020
version of this course. These appendices overlap with the main part of this article,
but parts of the appendices give a more leisurely (and possibly more tedious) review
of of strings/words, languages, and uncountable sets.
Acknowledgement: I have learned from many of my students, TA’s, and col-
leagues; some are acknowledged in footnotes, specifically Benjamin Israel (in the
versions of these notes since roughly early 2000’s) and Yuval Peres and Sophie Mac-
Donald (since Fall 2021). Amir Tootooni, a TA for the course (in Fall 2020 and
2021), made many helpful suggestions and corrections for this version (2021).

1. The Main Goals of This Article

One main goal of this article is to introduce some material that is typical of the
level of difficulty of CPSC 421/501. The problem with standard introductory text-
books to computer science theory, including the one we use, is that the more difficult
material typically occurs well after the first two weeks. This gives a misleading idea
of what is expected of students.

Another main goal of this article is to totally ruin all the main surprises in this
course. The most interesting parts of this course are:

(1) “self-referencing” leads to wonderful “paradoxes,” which can give interest-
ing theorems (e.g., the Halting Problem is undecidable);



UNCOMPUTABILITY OR RUINING THE SUPRISES IN CPSC421/501 3

(2) certain discrete math problems can “simulate” computers, so that if you
could solve these problems you could solve any problem solvable by such
computers (NP-completeness).

The description of these two parts may seem a little vague. By the end of the course
you should be able to state precise theorems regarding these ideas, and have tools
to know when (in practice) you are encountering such problems.

For the first few weeks of CPSC 421/501, we will study computability in an ab-
stract setting, and describe why we usually get problems that are not “computable”
in some sense. We will then try to make this precise but concrete, and we will see
why Turning machines are popular for doing this. We shall also see many related
problems and “paradoxes” in other fields. Sipser’s text [Sip] (or almost any intro-
ductory theory text) will explain the Halting Problem in more detail, and we shall
later return to the Halting Problem and cover it rigorously.

2. The Main Goal of CPSC 421/501

The main point of CPCS 421/501 is to address the following questions:

(1) What is meant by the problem “P versus NP,” and what are its ramifica-
tions?

(2) How might one go about resolving “P versus NP” (e.g., circuit complexity,
ideas from regular languages)?

(3) Which approaches to solving “P versus NP” will not work (e.g., the Baker-
Gil-Soloway Theorem, the Razborov-Rudich Theorem).

In brief, the problem “P versus NP” is generally considered to be one of the most
important questions in the field(s) of algorithms and computer science theory; its
study and that of related problems has given rise to many interesting developments
in these fields. This problem was first precisely stated in the 1970’s, with par-
tial formulations likely going back to the 1950’s, and certain algorithmic questions
arguably going back centuries if not millennia. If any student(s) solves this
problem this term, I will request that the university give an exceptional
grade of 101 out of 100 to this (these) student(s).

3. Some “Paradoxes”

The two main results of this course are perhaps (1) the unsolvabilitiy of the
halting problem, and (2) NP-completeness. Both results are linked with a number
of other remarkable results in logic and computing, and appear as paradoxes:

(1) I am lying.
(2) This statement is a lie.
(3) The phrase: “the smallest positive integer not defined by an English phrase

of fifty words or fewer” [This is called the “Berry Paradox,” although likely
due to Russell.]

(4) This is a statement that does not have a proof that it is true.
(5) Leslie writes about (and only about) all those who don’t write about them-

selves.
(6) Let S be “the set of all sets that do not contain themselves.” [This is

Russell’s most famous (and serious) paradox.]
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(7) Consider a C program, P , that (1) takes as input a string, i, (2) figures out
if i is the description of a C program that halts on input i, and (3) (i) if so,
P enters an infinite loop, and (ii) otherwise P stops running (i.e., halts).
[The paradox is: what happens when this program is given input j where
j is the string representing P ?]

One thing that these statements have in common is that they all either explicity
“refer to themselves” or can be “applied to themselves.” Another is that they
involve fundamental ideas in logic or computing. Another is that on some naive
level they lead to a “paradox.”

Consider the first statement, “I am lying,” famously used, of course, by Captain
Kirk and Mr. Spock1 to destroy the leader of an army of robots. This leads to a
paradox: if the speaker is telling the truth, then he is lying (“I am lying”), but if
he is lying, then he is lying that he is lying, meaning he is telling the truth. Either
way we get a contradition.

All the other statements lead to “paradoxes” (of somewhat different types); this
will be discussed in class and the exercises.

4. Dealing with Paradoxes

There are a number of approaches to dealing with paradoxes. They include:

(1) Ignore the paradox. Carry on regardless.
(2) Admit the paradox, but claim it doesn’t matter in practice.
(3) State the paradox in precise terms.

In this course we take approach (3), which can lead to a number of results, such as:

(1) The paradox goes away when things are stated precisely.
(2) The paradox doesn’t go away, and you have to change your theory if you

want it free of contradictions.
(3) The paradox doesn’t go away, but only if certain things are true. Therefore

(assuming your setting is free of contradictions) you have a theorem that
one of these certain things must be false.

As examples, the “smallest number” paradox gives result (1), i.e., the paradox goes
away when things are stated precisely; the set theory paradox gives result (2), i.e.,
it does not go away, and set theory had to be rewritten so as not to allow the
formation of concepts like, “the set of all sets that blah blah blah.” The halting
problem is an example of result (3), and gives us a theorem (woo-hoo!) about a
problem that cannot be solved by an algorithm or computer.

In order to show the Halting Problem is undecidable, we need to make our setting
precise.

5. The Pigeon Hole Principle and Professor-Ice Cream Systems

In this section we will the classical pigeon hole principle as it applies to pigeons
and “pigeon holes” (e.g., bird houses or bird sanctuaries). We will then apply
these principles when the pigeons are replaced by professors, and each prof declares
whether or not they like certain flavours of ice cream. The bird houses or sanctuaries
will then correspond to what we call liking patterns.

Notably many of these theorems are valid for infinite sets as well. This will be
a stepping stone to understanding the main theorems in this article regarding

1Thanks to Benjamin Israel for pointing out an earlier inaccuracy.
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This section is intended to be a stepping stone to understand the main theorems
of this article, covered in Section 7. In Section 7 we will replace “pigeons/professors”
with “programs,” “ice cream flavours” with “inputs,” and “liking patterns” with
“languages;” the main difference is that in Section 7 we will allow three different
results (yes, no, loops) when a program acts on an input, as opposed to this section
where each pigeon/professor declares one of two results (yes, no) when asked about
whether or not it/they like a certain flavour of ice cream.

5.1. The Classical Pigeon Hole (or Drawers) Principle and Co-Principle,
and Other Variants. The classical pigeon hole principle states that if some n ∈
N = {1, 2, . . .} there are n+1 pigeons, each one sheltered in one of n bird sanctuaries,
then some sanctuary shelters at least two pigeons. Of course, a similar principle
holds if each of n+ 1 professors are sheltered in one of n bird santuaries.

There are a number of variants. For example, if each of 2n + 1 professors are
sheltered in n bird sanctuaries, then some sanctuary shelters at least three profes-
sors.

The varaint that is of most interest to us will be that if each of n professors is
sheltered in n+ 1 bird sanctuaries, then some sanctuaries is free of professors. We
will call this the pigeon hole co-principle.

5.2. Finite Counting with Professors or Pigeons and Ice Cream. In this
subsection we give some “counting principles” for finite sets to give some intuition
for our discussion of counting principles for infinite sets. This includes two versions
of Cantor’s theorem that are valid for finite and infinite sets.

The reader may keep in mind that:

(1) our notion of “professor” or “pigeon” will later be replaced by that of
a “program;” the set of all professors, pigeons, and/or programs will be
denoted by P;

(2) similarly for “ice cream flavours” and “inputs (to a program),” the set of
all of which is denoted by I;

(3) similarly for “liking patterns” and “languages,” the set of all of which is
denoted by L = Power(I), i.e., the set of all subsets of I.

5.2.1. An Informal “Pigeon Hole” Principle. Imagine that we have a set, I, of 5
flavours of ice cream: (α) strawberry, (β) coffee, (γ) broccoli-and-cheddar, (ε) coq-
au-vin, (ζ) hummus (vegan). We use Power(I) to denote the set of all subsets of I;
Power(I) therefore has 32 elements, and can be arranged be arranged in a number
of ways, e.g. in increasing size of subsets:

Power(I) =
{
∅,

{α}, . . . , {ζ},
{α, β}, {α, γ}, . . . , {ε, ζ},

...

{α, β, γ, ε, ζ}
}

Say that we have a set, P, whose elements are professors, and each p ∈ P
likes some flavours, and dislikes others; i.e., we have a function Result : P × I →
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{yes, no}, with the following meaning:

Result(p, i) = yes “means” prof p likes ice cream i, and,

Result(p, i) = no “means” prof p dislikes ice cream i.

Here are some type of “pigeon hole” principles, where the professors play the
role of the pigeons.

Proposition 5.1. Let P, I,Result be as above. Result : P × I → {yes, no} where
I = {α, β, γ, ε, ζ} and |P| ≥ 33. Then there are two professors, p1, p2 ∈ P that
have the same ice cream liking pattern, i.e., such that

∀i ∈ I, Result(p1, i) = Result(p2, i).

Notice that the term ice cream liking pattern is in italics, because we have not
formally defined this notion. Notice that the phrase “be as above” is a bit vague.
Let us make this more precise, at the risk of being mildly tedious, and generalize
the setting.

5.2.2. A Formal “Pigeon Hole” Principle.

Definition 5.2. By a Professor-Ice Cream system we mean the data consisting of
a sets P, I and a map Result : P × I → {yes, no}. (More formally, a Professor-
Ice Cream system is a triple (P, I,Result) as above.) We refer to P as the set of
professors (or, at times, the set of pigeons), and the elements of P as professors
or pigeons. We refer to I as the set of ice creams and its elements as ice creams.
We refer to L = Power(I) as the set of liking patterns of the Professor-Ice Cream
system, and its elements as liking patterns. For any p ∈ P, we define the liking
pattern of professor/pigeon p to be

LIKING(p)
def
= {i ∈ I | Result(p, i) = yes}.

(In [Sip] and similar textbooks, it is common to use all caps for the names of
languages; hence we follow this convention, when reasonably, for liking patterns as
well.)

Throughout the discussion below, if S is a set, then |S| is the size (i.e., number
of elements) of S. (If S is infinite, then one would usually define |S| to be the
cardinality of S; we won’t worry about this for now.)

Proposition 5.3. Let (P, I,Result) be a Professor-Ice Cream system, where I is
a finite set. Then if |P| > 2|I|, then there are two professors with the same likings.

As we will explain in class, we do not assume that P is finite; we leave as an
exercise to consider the ramifications of having infinitely many professors or pigeons.

5.2.3. A “Too Few Professors/Pigeons” Principle, i.e., the Professor/Pigeon Co-
Principle. What happens when there are too few professors or pigeons in some part
of the world? For example, if you have five flavours of ice cream (as above), but
at most 31 professors or pigeons, then (since 31 < 25 = 32) there is some liking
pattern that is not found among the 31 professors or pigeons. Let us state this
formally.

Proposition 5.4. Let (P, I,Result) be a Professor-Ice Cream system, where P is
a finite set. Then if |P| < 2|I|, then there is some liking pattern L ∈ L = Power(I)
that cannot be found among any of the professors (or pigeons).
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5.2.4. Cantor’s Theorem as it Applies to Professors or Pigeons and Ice Cream.
We will now improve Proposition 5.4, in the sense that if P, I as above (i.e., in a
Professor-Ice Cream system) have the same size, then we can explicitly write down
a liking pattern that does not occur. It is essentially the deservedly well-known
Cantor’s Theorem.

Theorem 5.5. Let (P, I,Result) be a Professor-Ice Cream system where P = I.
Then the liking pattern

(1) L = {i ∈ I | Result(i, i) = no} ⊂ I

is not the liking pattern of any professor/pigeon.

Proof. Assume that L ⊂ I is the liking pattern of professor i′ ∈ I (recall I = P).
Then we have

{i ∈ I | Result(i′, i) = yes} = LIKING(i′) = L = {i ∈ I | Result(i, i) = no}.

But this implies that

(2) {i ∈ I | Result(i′, i) = yes} = {i ∈ I | Result(i, i) = no}.

Now Result(i′, i′) must equal either yes or no, and we now show that either way
(2) gives a contradiction: indeed, if Result(i′, i′) = yes, then i′ lies on the set on
the LHS (left-hand-side) of (2) but not on the RHS one, which contradicts (2).
Similarly if Result(i′, i′) = no we get a similar contradiction. �

Notice that this theorem does not assume that P = I is a finite set; furthermore,
the proof above works for arbitrary sets.

Example 5.6. Consider three professors, Profs. Strawberry, Coffee, and Hummus,
and three flavours of ice cream, strawberry, coffee, and hummus. Prof. Strawberry
likes hummus flavoured ice cream (and not the other two flavours), Prof. Coffee
likes all three flavours, and Prof. Hummus does not like any of these three flavours.
Thinking of this as the case I = P , the set L in (1) equals

L = {strawberry, hummus}

Of course, one can easily check that L does not equal any of the three likings of
our professors. However, one can give (a much longer proof) of this along the lines
of the proof of Theorem 5.5: for example, the liking pattern of Prof. Strawberry is

LIKING(Strawberry) = {humus},

so LIKING(Strawberry) does not contain strawberry ice cream, but L above does.
Similarly for the other two profs/pigeons.

Curiously, it may be simpler to state a far more general and far stronger form
Theorem 5.5; first we require a definition.

Definition 5.7. If A,B are sets, we write |A| ≤ |B| if there exists an injection
g : A→ B, i.e., a map of sets g such that there are no two distinct a1, a2 ∈ A such
that g(a1) = g(a2).

[For example, a 8-digit student ID number should uniquely identify the student;
hence the map from students to 8-digit ID numbers should be an injection. Can
you give another example (hopefully a better one...)?]
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Theorem 5.8. Let (P, I,Result) be a Professor-Ice Cream system such that there
is an injection g : P → I. Then

(1) there exists a liking pattern, L, such that

(3) ∀p ∈ P (for all p in P), g(p) ∈ L ⇐⇒ Result(p, g(p)) = no

(i.e., for all p ∈ P, if Result(p, g(p)) = yes, then g(p) /∈ L, and if
Result(p, g(p)) = no, then g(p) ∈ L); and

(2) any liking pattern satisfying (3) is not the liking pattern of any prof/pigeon.

The reader should be able to produce a proof of the second part of this theorem
based on the proof of Theorem 5.5; curiously, the first part of this theorem is not
hard, but the reader will need to specify L explicitly unless they want to invoke the
axiom of choice.

5.3. Cantor’s Theorem. The following is the (more) common way of stating
Cantor’s theorem.

Theorem 5.9. Let I be a set. Then if f : I → Power(I) is any map, then the set

L = {i ∈ I | i /∈ f(i)}
is not in the image of f . In particular, no map f : I → Power(I) is a surjection.

Proof. Assume that L were in the image of f , i.e., that for some i′ ∈ I we have

f(i′) = L = {i ∈ I | i /∈ f(i)}.
Then we have either i′ ∈ f(i′) or i′ /∈ f(i′), both of which yield a contradiction
(details will be given in class and/or the homework). �

5.4. Finite Counting with Boolean Formulas of a Given Size. Let us con-
sider a more serious example. Fix an integer, n ≥ 1. The Boolean n-cube
is I = {0, 1}n; a Boolean formula of size k on n variables is any string on
(, ),∧,∨,¬, x1, . . . , xn obtained from the following inductive description:

(1) x1, . . . , xn,¬x1, . . . ,¬xn are each Boolean formulas of size 1;
(2) a formula of size k is a string of the form if f, g are formulas of sizes k1, k2,

then (f∧g) and (f∨g) where f, g are formulas of sizes k1, k2 with k1+k2 = k.

This is the usual notion of a formula, where the size counts the number of variables
(with their repetitions) in the formula. Let Pk denote the set of Boolean formulas
of size at most k. We claim that

|Pk| < k!(4n)k

(this bound is a bit crude). Then there is a Boolean function on n variables (i.e., a
function from I to {0, 1}) that is not computed by any formula of size at most k,
provided that

|Pk| ≤ 2|I|,

i.e.,

k!(4n)k ≤ 22n

.

We easily get

Theorem 5.10. If n is sufficiently large, then there is a Boolean function on n
variables not computed by any formula of size at most 2n/(c log n) where c is a
constant independent of n.
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5.5. Infinite Counting. Consider trying to generalize the discussion of the pre-
vious subsection to the case where P and I can be infinite. It turns out that
Theorems 5.9 and 5.5 hold as is. What is more subtle is how does one make sense
of statments like |A| < |B|, |A| = |B|, etc. ?

Many readers will be aware of some subtleties: for example, if N = {1, 2, 3, . . .}
denotes the natural numbers ([Sip] uses N for N), and Z = {. . . ,−2,−1, 0, 1, 2, . . .}
([Sip] uses Z), then there is an isomorphism

f : N→ Z

(given in class and/or the homework). Hence even though N is a proper subset of
Z, they seem to have the same “size.”

In fact, we will discuss in class and/or the exercises some of the definitions and
facts below. [Most likely we will not cover all of these in this years’ CPSC 421/501;
the reader may also refer to Appendices A–B for a more leisurely account of the
first three topics below.]

(1) a set is said to countably infinite if it is isomorphic to N, and any infinite
set S that is not countably infinite is said to be uncountable; examples of
uncountable sets are Power(N) by Theorem 5.9.

(2) While infinite sets may seem a bit weird at first, they do follow some very
reasonable rules. For example, if A,B are infinite sets that are isomorphic,
then Power(A) is isomorphic to Power(B).

(3) In CPSC 421/501 we will be extremely interested in the fact that for any
alphabet (i.e., finite, nonempty set), A, the set A∗ of words/strings in A
is countably infinite, and hence the set of languages over A, i.e., the set
Power(A∗), is uncountably infinite. Hence there are always languages over
A that are not decided/recognized/etc. by any set of algorithms, in the sense
of a subset of B∗ for some alphabet B, even if we endow these algorithms
with five of your favourite oracles and three sources of randomness (or
anything else, provided that each element of B∗ recognizes at most one
language in Power(A∗).

(4) For the typical kinds of set theories one assumes, there is a notion of “size”
of infinite sets, which is a so-called system of cardinal numbers ; in this
theory one uses ℵ0 to denote the size, |N|, of N and similarly

ℵ1 = |Power(N)|, ℵ2 =
∣∣∣Power

(
Power(N)

)∣∣∣, etc.

[Actually, the story of ℵi for i ≥ 1 is a bit more complicated, but under the
most common set theoretic axioms (e.g., ZFC, i.e, ZF + axiom of choice)
the above is true.] The fact that N×N is isomorphic (as sets) to N explains
the “multiplication rule”

ℵ0 × ℵ0 = ℵ0.

For similar reasons one has ℵ0 + 1 = ℵ0, ℵ0 < ℵ1, etc.

The following topics are more advanced, and we won’t cover them this year in
CPSC 421/501; however, these facts may amuse some readers.

(1) It was a long-standing open problem to determine if one could prove the
continuum hypothesis, i.e., that there does not exist cardinal number strictly
between ℵ0 and ℵ1 (which is the cardinality of the real numbers R, hence
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the name “continuum”); this was shown to be independent of the usual set
theory axioms (ZFC) by Paul Cohen in 1963.

(2) Likely a better approach to set theory is the approach of Grothendieck
et al. that works with universes ([sga72], Exposé I.0). This approach is
essentially a refinement of the view that collections should be viewed as one
of two types: sets and classes. The theory of universes is far more satisfying
and has a number of advantages: e.g., there is a denumerable (countable)
universe (of finite strings over a fixed alphabet), and its existence stresses
the fact that certain constructions involving finite sets yield again finite
sets (but some yield infinite sets).

Definition 5.11. If A,B are sets, we write |A| < |B| and say the size (cardinality)
of A is less than that of B if there is no surjection f : A→ B.

The above definition is the most convenient definition for us is, since in this
case Cantor’s Theorem (Theorem 5.9) asserts that for any set, S, |S| < |Power(S)|.
However, in most common types of set theory, Definition 5.11 is equivalent to
saying that there is no injection B → A, and this equivalence is not at all evident.
Similarly, it is easy to see that∣∣2N∣∣ ≤ ∣∣3N∣∣ ≤ ∣∣4N∣∣ =

∣∣2N∣∣
(where |A| ≤ |B| means that there exists an injection A→ B), and hence (in most
common set theories) one has ∣∣2N∣∣ =

∣∣3N∣∣.
Yet it is non-trivial to give an isomorphism 2N → 3N.

6. Why Work with Programs Abstractly? Why Work with Turing
Machines?

At the end of this course you should understand the appeal of a Turing machine,
despite the fact that it is a highly unrealistic model of a computer (e.g., it has no
“random access” memory): namely, it is quite simple to describe in precise math-
ematical terms. An added bonus is that the class of Turing-machine polynomial
time algorithms includes most polynomial time algorithms in the usual “classical”
(non-randomized, non-quantum, etc.) sense.

However, even Turing machines take a while to define and get used to. And yet,
it is easy to show that there exist unsolvable problems—specifically the acceptance
problem and the halting problem—as soon as one says a small amount about what
a “program” or “algorithm” is supposed to be, and how we should be able to build
new “programs” or “algorithms” from old ones. This is what we do in the next
section. When we cover Sections 3 and 4 of [Sip], we will see essentially the same
principles that we now discuss abstractly.

First, let’s describe the abstract framework we need in more practical terms.
Consider the problem of given a program written in C (or C++, Python,

Javascript, APL, etc.), say whether or not the program will halt, i.e., whether
or not it will stop running. We wish to show that if this problem were decidable—a
concept that we’ll say a little more about later—then we get a contradiction. Let
us outline how to do this precisely:

(1) Specify what is meant by a C program: define an alphabet, symbols
(or letters or characters) a string (or word) over an alphabet, and finally a
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language over an alphabet (see Chapter 0 of Sipser). The language of valid C
programs is a (context-free) language over the alphabet Σ = {a, b, . . .}; this
language takes a number of pages to specify (as a context-free grammar).
The same is true for most programming languages people use these days.
(A Turing machine is, in contrast, simply a collection of five-tuples—much
easier to specify from scratch.)

(2) Specify what is meant by running a C program and what is meant
by a C program that halts:

(3) Convince yourself that C programs are powerful enough to (1)
simulate themselves, and (2) do enough interesting things that
you consider them to be a reasonable model of what “can be
computed:

(4) Define technical distinctions such as decided versus recognizing:
If a program takes as input another program and simulates it, the simulator
can (1) halt if the simulated program halts, and (2) not halt if the simu-
lated program doesn’t halt. So the language HALTING C PROGRAMS2

can be “accepted.” We are claiming it can’t be decided, that is there is al-
gorithm/program that takes a C program and always halts while correctly
saying whether or not the input represents a C program that halts.

(5) Take the appropriate vague paradox and get the desired theo-
rem: See Section 5.1 from Sisper’s text. Sipser’s text uses “TM” or Turing
Machines, instead of C Programs. Can you guess why?

7. Program-Input Systems and Uncomputability

We wish to give a summary of the basic theorems about undecidable problems,
but in as general a framework as possible. Hopefully this will help clarify Chapters 3
and 4 of [Sip] when we get there. You should make sure that this framework
makes sense in the specific examples of Java programs, C programs, Turing Machine
programs, etc.

The point of this section is to give all the necessary definitions to prove that the
“acceptance” and “halting” problems are undecidable.

Our approach is to bundle all the necessary definitions into two subsections, each
definition followed by a/some theorem(s). The key to this section is to understand
the definitions and why most classical notations of algorithms—and a few more—
satisfy these axioms.

As explained in the last section, computer scientists like to use all capital letters
for languages, which helps distinguish them in notation (and is not meant to sound
like some computer science theoretician is screaming at you).

7.1. Definition of a Program-Input System, The Language of a Program,
Acceptance, Recognition, Deciding, and Lack of Rejection.

Definition 7.1 (Program-Input Systems, Acceptance, Recognition, Deciding). By
a program-input system we mean a triple

S = (PS , IS ,ResultsS) = (P, I,Results),

2Computer scientists seem to enjoy writing a specified language in all capital letters, e.g., SAT,
3-COLOR, CLIQUE
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where P, I are sets, and Results is a map Results : P × I → {yes, no, loops}. We
refer to P, I as, respectively, the sets of programs and inputs, and to Result as the
result function. We refer to L = Power(I) as the set of languages of the program-
input system. For any p ∈ P and i ∈ I, we say that p accepts i if Result(p, i) = yes;
otherwise we say that p does not accept i (see the explanation below). For any p ∈ P,
we define the language of the program, p (or language recognized by p) to be

LANGUAGE(p)
def
= {i ∈ I | Result(p, i) = yes} ∈ L.

We say that p ∈ P is a decider if for all i ∈ I, Result(p, i) is either yes or no. We
say that L ∈ L is recognizable if for some p ∈ P we have L = LANGUAGE(p),
and, moreover, we say that such an L is decidable if there exists at least one such
a p ∈ P that is a decider.

(Compare some of these definitions with Definitions 3.5 and 3.6 of [Sip].)

Remark 7.2. In the notation S = (PS , IS ,ResultsS) above, we frequently drop the
subscript S when confusion is unlikely to occur. However, there are situations
where we will really need the subscript! For example, in Section 4.1, [Sip]
writes

ADFA, ANFA, ATM

for the acceptance languages in the context of, respectively, DFA’s, NFA’s, and
TM’s (Turing machines) that are “standardized” in some reasonable way (see be-
low); by constrast, below we would write these languages as

ACCEPTANCEDFA, ACCEPTANCENFA, ACCEPTANCETM.

Here it is crucial to keep track of the system, since all three languages are different
(the first two languages are decidable but the last one is not). So in the above
definition it would be more precise to write:

LANGUAGES(p)
def
= {i ∈ IS | ResultS(pS , iS) = yes} ∈ LS ,

and then say that we often drop the subscript S when confusion is unlikely to
occur. However, putting in the subscript S everywhere becomes rather tedious
and cumbersome, both for the writer and the reader. In this section the let-
ters/symbols P, I and words/strings such as Result,LANGUAGE are RE-
SERVED WORDS with a special meaning. If we wanted to be more flexible,
we could write yesS to allow the particular choice of our “yes” word to depend on
S; but since we don’t need this flexibility, we don’t do this; this is why [Sip] omits
the blank symbol from the definition of a Turing machine in Chapter 3, although
this gets you into trouble in [Sip], Chapter 4, as we will see below.

Notice that in Chapter 1, machines/algorithms (e.g., a DFA, an NFA, etc.) al-
ways returns yes or no as soon as they have read the input; in this context one
says that p rejects i if Result(p, i) = no. However, Turing machines, C programs,
etc., have the possbility of “looping,” denoted loops, i.e., calculating forever and
never halting, never returning a yes or no (not necessarily stuck in a single in-
finte loop). In this context one generally avoids the terminology “reject,” since if
a machine/algorithm does not accept an input, both no and loops are possible
results.

Hence in this section one distinguishes the set of machines/algorithms that are
deciders, that always halt after a finite amount of time and give a yes or no answer;
a machine/algorithm that is not a decider must therefore loop on at least one input.
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Notice that a program-input system does not necessarily have to have anything
to do with programs or algorithms. For example, we could have

P = I = {rock, paper, scissors},
and Result(x, y) could be yes if x beats y (in the game Rock, Paper, Scissors), no
if y beats x, and loops if x = y.

Let us briefly summarize the terminology in this section for a program-input
system:

(1) in our abstract setting we use the words yes, no, and loops, respectively
for the words “accepts,” “rejects,” and “loops” in [Sip];

(2) a language is an element of Power(I), which we tend to write in all caps;
(3) a decision problem can be viewed either as (1) a language over some

alphabet Σ, or (2) (informally) the problem of “computing” a function
Σ∗ → {yes, no};

(4) each program, p ∈ P recognizes exactly one language, which we denote
LANGUAGE(p);

(5) a program is a decider if it always halts;
(6) a language is decidable if it is recognized by at least one decider;
(7) unlike DFA’s and NFA’s, our abstract setting and Turning machines have

the possibility of not halting, which we say gives the result loops, which
[Sip] calls “looping,” which does imply that the algorithm has a sort of
“infinite loop” in its code.

7.2. The Existence of an Unrecognizable Language. The following theorem
requires only a small part of Definition 7.1, and uses only Cantor’s theorem and
the sizes of P, I, nothing about the particular Result function we choose.

Theorem 7.3. Let (P, I,Result) be a program-input system, with P, I both count-
ably infinite, or, more generally, |P| ≤ |I|. Then some language of this system is
not recognizable.

Proof. According to Theorem 5.8, no map f : P → L = Power(I) can be a surjec-
tion. Hence the map taking

p 7→ LANGUAGE(p)

is not a surjection, meaning some element of L is not in the image of P. �

7.3. The Acceptance Problem is Undecidable. Consider a C (C++, Python,
etc.) program: likely you represent this as an ASCII string, and hence think of
P—the set of all C programs—as a subset of ASCII strings (not all ASCII strings
are valid programs...). Consider when an input to such a program is an arbitrary
ASCII string. Hence

P ⊂ ASCII∗ = I
(see Chapter 0 in [Sip] and/or Appendix A here to recall this notation and what is
meant by an alphabet, a string, etc.).

Provided that a program-input system is expressive enough, one can easily pro-
duce undecidable problems, i.e., languages that are undecidable.

Definition 7.4. By an expressive program-input system we mean a five-tuple S =
(P, I,Result,EncodeProg,EncodeBoth) where

(1) (P, I,Result) is a program-input system.
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(2) EncodeProg : P → I and EncodeBoth: P × I → I are both injections

such that the following conditions hold:

Program Negation: given any program p ∈ P, there is a program p′ ∈ P,
such that

Result(p′, i) = ¬Result(p, i),

where ¬, called the negation operation, is defined via: ¬yes = no, ¬no =
yes, and ¬loops = loops; and

Feeding a Program to Itself: Given any program, p ∈ P, there is a pro-
gram, p′ ∈ P, such that

∀q ∈ P, Result(p′,EncodeProg(q)) = Result(p,EncodeBoth(q,EncodeProg(q)))

For such a system we define the Acceptance Problem to be the language given by

(4) ACCEPTANCE = {EncodeBoth(p, i) | p ∈ P, i ∈ I and Result(p, i) = yes}.
We say that u ∈ P is a universal program if u recognizes ACCEPTANCE. We say
that a p ∈ P halts on an input i ∈ I if Result(p, i) is either yes or no. We define

HALTING = {EncodeBoth(p, i) | p ∈ P, i ∈ I, and Result(p, i) = yes or Result(p, i) = no}.

We remark that in practice it is simple to perform “Program Negation,” since
all you need to do is swap the answers yes and no. However, “Feeding a Program
to Itself,” is more tedious to do, but not particularly difficult in most settings such
as C programs, Python programs, Turning machines, etc. We will say a bit more
about this in class.

Theorem 7.5. In any expressive program-input system, the Acceptance Problem,
ACCEPTANCE, is undecidable.

In 2021, we omitted the following proof. However, for histori-
cal reasons, we include this proof; if you’d like to see why this
is essentially a diagonalization argument, see pages 208–209
in [Sip] (3rd Edition).
This proof tries to keep the same notation as [Sip]. I recommend skip-
ping this proof, since there is a much more concrete way to state the
above theorem once we define universal programs; I find the proof below
unnecessarily confusing.

Proof. Assume to the contrary that there is some expressive program-input system,
(P, I,Result,EncodeProg,EncodeBoth), in which some program, h ∈ P, decides
ACCEPTANCE, i.e., h is a decider and

∀p ∈ P, i ∈ I, Result(h,EncodeBoth(p, i)) = Result(p, i).

According to our ability to “Feed a Program to Itself,” there exists a program
h′ ∈ P such that

∀q ∈ P, Result(h′,EncodeProg(q)) = Result(h,EncodeBoth(q,EncodeProg(q))) = Result(q,EncodeProg(q)).

By our ability to “Negate a Program,” there is d ∈ P such that

∀q ∈ P, Result(d,EncodeProg(q)) = ¬Result(q,EncodeProg(q)).

In particular, setting q = d we have

Result(d,EncodeProg(d)) = ¬Result(d,EncodeProg(d)).
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According to our rules regarding negation, we must have

(5) Result(d,EncodeProg(d)) = loops,

since only loops equals its own negation. But then d is not a decider. �

Note that by the Halting Problem one can mean a number of related problems.
For example, when I is the set of strings/words over an alphabet, there is a distin-
guished “empty input.” One could consider the programs that halt on the empty
input and define this as “the Halting Problem.” We have described the notion
of halting and the Halting Problem at this point simply to explain some common
parlance in computer science. Most textbooks that I know actually begin by prov-
ing that the Acceptance Problem is undecidable, and then progress from there to
the Halting Problem (which can be proven similarly). At present (Fall 2021) I’m
not sure if one needs additional assumptions to show that the Halting Problem is
undecidable in this abstract setting of this section.

7.4. Universal Programs and Delightful Programs.

Definition 7.6. Let (P, I,Result,EncodeProg,EncodeBoth) be an expressive
program-input system. We say that u ∈ P is a weak universal program if u recog-
nizes ACCEPTANCE, and a universal program if

∀p ∈ P, i ∈ I, Result(u,EncodeBoth(p, i)) = Result(p, i).

In class will explain that term “strong universal program” is the usual definition
used in a universal Turing machine, but (see below) in most settings one can build
a strong universal program by running two weak ones “in parallel.”

In other words, a universal program takes as its input both the description of a
program, p, and an input, i, and is responsible to produce the same result as the
result of p on i. These can built on top of what one usually calls a “debugger”
for a program: to find bugs (errors) in a computer program, it is helpful to have a
tool that simulates each “step” of a computer program and allows one to examine
the contents of each variable at each step. By running a debugger on a computer
program, one can “simulate” the running of a program with various inputs, step-
by-step. A universal machine is built by running a debugger on a program and
its inputs, stopping when the simulation stops and giving either the answer yes

or no; if the simulation never stops, then program is “looping” on its input, and
the simulation never stops (which should be what it means to produce the result
loops).

One can build—with sufficient will and patience—a debugger for most comput-
ers, and hence build a universal program. The textbook [Sip] tends to gloss over
this point, but I tend to cover this in more detail in class.

Theorem 7.5 can be stated as a “positive theorem3.”
First note that if (P, I,Result,EncodeProg,EncodeBoth) is any expressive

program-input system, the two conditions in Definition 7.4 allow us to “build”
from any universal progrma, u, a program d ∈ P such that

(6) ∀q ∈ P, Result(d,EncodeProg(q)) = ¬Result(q,EncodeProg(q));

3We thank Yuval Peres who stresses that it is often better to prove a theorem without merely

deriving a contradition an assumption, but as a result: e.g., rather than proving that there are
infinitely many primes, one can prove that the sums of reciprocals of the prime numbers must

diverge.
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we say “build” because although the existence of d is guarenteed by the two condi-
tion in Definition 7.4, in software one can u is a program, and then d can be built
using u as a subroutine, where we first feed an input q to itself, then run u, then
negate the answer.

Definition 7.7. If (P, I,Result,EncodeProg,EncodeBoth) is an expressive
program-input system, we say that d ∈ P is delightful if it satisfies (6).

Theorem 7.8. For any delightful program, d, in any expressive program-input
system, (P, I,Result,EncodeProg,EncodeBoth),

(7) Result(d,EncodeProg(d)) = loops.

Proof. Setting q to d in (6), we have

Result(d,EncodeProg(d)) = ¬Result(d,EncodeProg(d)),

which immediately implies (6). �

Versions before Nov. 17, 2021 had the results above stated as one long, awkward
theorem.

7.5. Example: Standardized Alphabets and Turing Machines. Let us sum-
marize some class discussion.

In class we defined a standardized Turing machine to be a Turning machine
M = (Q,Σ,Γ, δ, q0, qacc, qrej, blank) (the textbook [Sip] omits the blank symbol) of
the following form:

(1) Σ = {1, . . . , s} for some s ∈ N (call such an alphabet a standardized alpha-
bet)

(2) Q = {1, . . . , q} for some q ∈ Z, with q0 = 1, qacc = 2, qrej = 3;
(3) Γ = {1, . . . , γ} for some γ ∈ Z (hence Σ ⊂ Γ), and where the blank symbol,

blank, is equal to s+ 1.

The main points are:

(1) by “renaming” or “numbering,” any alphabet has a bijection to a standard-
ized alphabet, i.e., one of the form {1, . . . , s};

(2) by “renaming” or “numbering,” any Turing has a bijection to a standardized
Turning machine as above, and

(3) if we “rename” or “number” the states of a Turing machines, we get the
same “algorithm” in the sense that we get the same result over any input.

If

(8) ΣWow! = {0, 1,#, L,R},

we explained how to express any standardized Turning machine as a string over
ΣWow! (the symbols/letters L,R are only there for readability). Furthermore, we
explained how to describe an input to such a Turing machine, using the subalphabet
{0, 1,#}. This gives us functions EncodeProg : P → Σ∗Wow! and EncodeBoth: P →
Σ∗Wow!.
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7.6. Oracle Turning Machines and the Acceptance Hierarchy. In class we
wll explain on Tuesday, November 23 that if M = (Q,Σ,Γ, δ, q0, qacc, qrej, blank)
is any Turning machine, and f : Γ∗ → Γ∗ is any function, then we can endow a
Turing machine with the ability to call f by writing a word/string w over Γ on
some designated tape (of a multitape TM), and if the Turing machine finds itself in
a special state, qoracle, “magically” f(w) appears on this tape in place of w. This is
like the magical sin button (cos, exp, etc.) on your scientific calculator that you
may have been taking for granted since the late 1970’s, or—if you have a sense of
perspective—the 1980’s or early 1990’s.

We call such a Turing machine “a Turing machine, M with oracle f ,” with Γ
understood. In practice, we often insist that f is defined one some fixed alphabet
Σoracle, which must be a subalphabet of the tape alphabet (i.e., of Γ = ΓM ) of
any Turing machine M that is permitted to call f . We refer to this expressive
program-input setting, S, as the setting of Turing machines endowed with oracle f .
We use the shorthand

ACCEPTANCETM oracle f or ACCEPTANCEoracle f

to denote the acceptance problem for standardized oracle Turing machines that call
the oracle f , once we have standardized such Turing machines in a reasonable way
(see Exercise 8.7.2), and similarly define

HALToracle f .

In practice, we often insist that f maps Γ∗oracle to some two element subset of
Γ∗, say {w1, w2}, whereupon we identify identify f with the subset, A, of Γ∗oracle

mapping to, say w1. In this case the oracle is really solving a decision problem.
For some reason, the oracle then goes in the superscript (ack!), so if A ⊂ Γ∗oracle is
associated to the function f : Γ∗oracle → {w1, w2}, we use

ACCEPTANCEA refers to ACCEPTANCEoracle f ,

to denote the acceptance problem for standardized Turning machines with oracle A,
which assumes some reasonable standardization, such as in Exercise 8.7.2; similarly

HALTA refers to HALToracle f ,

the denotes halting problem for standardized Turning machines with oracle A.
There are some minor additional assumptions, such as we need to identify the

alphabet ΣWow! in (8) with some subset of the oracle alphabet Σoracle so that we
can properly query our “oracle” about the acceptance problem.

If we fix some alphabet Γ∗oracle, we easily see that (once we unwind all the defi-
nitions, see Exercise 8.7.4) that there is a hierarchy

∅, ACCEPTANCE, ACCEPTANCEACCEPTANCE, ACCEPTANCEACCEPTANCEACCEPTANCE

, . . .

of successively more powerful oracles, in the sense that there is a sequence of strict
inclusions

Decidable(∅) ⊂ Decidable(ACCEPTANCE) ⊂ Decidable
(

ACCEPTANCEACCEPTANCE
)
⊂ · · ·

where for an oracle, A, Decidable(A) denotes the acceptance problem for standard-
ized oracle TM’s with oracle call to A. Similarly there is a “halting hierarchy” with
“ACCEPTANCE” replaced everywhere with “HALT.”
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7.7. UNDER CONSTRUCTION: The Complement of the Acceptance
Problem is Unrecognizable. Given two computer programs p, p′ in any classical
setting, we can run p and p′ on the same input, i, simultaneously, say one step at
a time of each, and halt as soon as one of p or p′ halts. This should make the
assumption reasonable.

Definition 7.9. We say that an expressive program-input system
(P, I,Result,EncodeProg,EncodeBoth) has weak simultaneity if for all p, p′ ∈ P
there is a program p′′ such that for all i ∈ I,

(1) Result(p, i) = yes and Result(p′, i) = loops implies that Result(p′′, i) =
yes; and

(2) Result(p, i) = loops and Result(p′, i) = yes implies that Result(p′′, i) =
no.

Notice that in most applications, where, say, I = ASCII∗, the complement of the
Acceptance Problem includes (1) those strings that are not meaningful encodings
of both a program and in input to the program, and (2) those strings that are
meaning encodings of a program, p, and an input i, such that p does not (halt and)
return yes on input i.

Theorem 7.10. Let (P, I,Result,EncodeProg,EncodeBoth) be an expressive
program-input system with weak simultaneity, for which a universal program ex-
ists. Then the complement of the Acceptance Problem, i.e.,

ACCEPTANCE− COMP
def
= I \ACCEPTANCE

is unrecognizable.

The proof is an easy argument by contradition.

Definition 7.11. We say that an expressive program-input
system (P, I,Result,EncodeProg,EncodeBoth) is loopable if for any p ∈ P and
any function g : {yes, no, loops} → {yes, no, loops} for which g(loops) = loops,
there is a program p′ such that for all i ∈ I such that for all i ∈ I we have

Result(p′, i) = g
(
Result(p, i)

)
.

Notice that “loopable” is a strengthening of the ability to negate a program.
It is easy to see that any expressive program-input system that is loopable and

has ETC.
[ADD CONTENT HERE: REMARKS, ETC.]

7.8. UNDER CONSTRUCTION: Intuitive Summary of Terminology Re-
garding Expressive Program-Input Systems. Here is the summary of our
terminology for definitions regarding expressive program-input systems,

S = (PS , IS ,ResultsS ,EncodeProgS ,EncodeBothS),

or just
= (P, I,Result,EncodeProg,EncodeBoth)

when S is understood in context. We describe things in intuitive where P, I are
sets, Result : P × I → {yes, no, loops} where EncodeBoth etc.

Notice that the abstract definitions don’t really require that the pro-
grams claimed to exist perform the algorithms in a certain way; the ab-
stract definitions don’t distinguish between two programs or algorithms
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provided they yield the same results! Hence the summary below refers to the
intuitive way we would create such programs if we were writing a program.

(1) S is said to have program negation (Definition 7.4) if we can run any
program and negation the result (or find a different algorithm that yields
this result).

(2) S is said to be able to feed a program to itself (Definition 7.4)
if before running any program we preprocess the input as follows: we
check if the input is a desciption of a program, EncodeProg(q), for
some q ∈ P, and if so we (erase this input and) replace this input by
EncodeBoth(q,EncodeProg(q)); otherwise, if the input is not of the form
EncodeProg(q), the program is allowed to behave as it wishes.

(3) A u ∈ P is said to be a (strongly) universal program if on an input
of the form EncodeBoth(p, i), u gives the result equal to Result(p, i) (we
think of this as built the same way that a debugger is built, but we don’t
distinguish between two programs that produce the same result).

(4) A u ∈ P is said to be a weakly universal program if recognizes
ACCEPTANCE. An example of a weakly universal program is a (strongly)
universal program is also a

(5) A d ∈ P is said to be delightul if the result of d on any input of the form
EncodeProg(p) is ¬ResultEncodeBoth(p,EncodeProg(p)).

(6) A d ∈ P is said to have weak simultaneity if
(7) A d ∈ P is said to loopable (i.e., when it talks if)

———————————————————–

7.9. Further Remarks. It is interesting to consider how the functions Encode-
Prog and EncodeBoth should be built, since this has connections to Kolmogorov
complexity (as of 2021, aka Chaitin-Kolmogorov, Kolmogorov-Chaitin complexity,
SolomonoffKolmogorovChaitin complexity, or descriptive complexity). The text-
book [Sip] glosses over the fine points of this issue; I always discuss this when I
teach CPSC 421/501, since it helps me visualize what is concretely going on. This
point can be discussed with no reference to the above material.

Imagine you wish to communicate two seperate ASCII strings. One way to do
this is to agree to use the symbol $ as a separator, e.g.,

I love my cache followed by I have enough cash

(we have purposely omitted typical English punctation) becomes

I love my cache$I have enough cash

However, with this rule the two sentences:

I love my $ followed by I have enough $

becomes

I love my $$I have enough $

which cannot be parsed unambiguously, unless we add some more conventions.
For example, we could insist on duplicating each true character, and using %$ as a
separator. Hence

I love my $ followed by I have enough $

becomes

II lloovve mmyy $$%$II hhaavve eennoouugghh $$
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although this could double the length of the string. What could be more efficient
conventions? Some possibilities might appear upside-down in a footnote at some
point4

8. EXERCISES (FOR THIS YEAR, FALL 2021)

8.1. Paradox Exercises.

Exercise 8.1.1. Consider Paradox 3 of Section 3. [This is usually called the “Berry
Paradox,” although likely due to Russell; feel free to look it up somewhere.] The
following exercise is giving a simpler version of this “paradox.”

8.1.1(a) Let W be the four element set

W = {one, two, plus, times}.
Ascribe a “meaning” to each sentence with words from W (i.e., each string
over the alphabet W ) in the usual way of evaluating expressions, so that

one plus two times two means 1 + 2× 2 = 5,

plus times two plus is meaningless,

and each sentence either “means” some positive integer or is “meaningless.”
Show that every positive integer is the “meaning” of some sentence with
words from W .

8.1.1(b) Show, more precisely, that there is a constant, C, such that any positive
integer, n, can be described by a W -sentence of at most 1 + C(log2 n)2

words.
8.1.1(c) Consider the five element set

U = W ∪ {moo}
with the following meaning for moo:
(a) if it appears anywhere after the first word of a sentence, then the

sentence is meaningless,
(b) if it appears only once and at the beginning of a sentence, then we

evaluate the rest of the sentence (as usual), and
(i) if the rest evaluates to the integer k, then the sentence means

“the smallest positive integer not described by a sentence of k
words or fewer,” and

(ii) if the rest evaluates to meaningless, then the sentence is mean-
ingless.

For example, “moo moo” and “moo plus times two” are meaningless, and
“moo two times two” means “the smallest positive integer not described
by a sentence of four words or fewer.” What is the meaning of “moo one”?

8.1.1(d) What seems paradoxical in trying to ascribe a meaning to “moo two”?
What do you think is the “best” interpretation of “moo two”, and why
won’t this completely satisfy your notion of the word “describe”? [This
question has a few correct answers, none particularly better than the others.
If this last question seems strange or wrong, make up your own version of
this question and answer it.]

4 (1)Agreetohavingcertain“reservedsymbols/words,”(2)Trueseparator=$a,actual$=$b,

plus,forextraefficiency,actual$$=$c,etc.(3)???



UNCOMPUTABILITY OR RUINING THE SUPRISES IN CPSC421/501 21

8.2. Pigeon Hole Exercises: POSSIBLY ADD MORE EXERCISES HERE;
PROOFREAD CAREFULLY.

Exercise 8.2.1. The point of this exercise is to generalize the pigeon hole principle
and co-principle in fairly simple ways.

8.2.1(a) Assume that a village has exactly 21 profs and 10 bird sanctuaries, and that
each village prof resides in a single bird sanctuary. Briefly explain—in 75
English words or fewer, and ideally closer to 21—why there must be at least
three profs residing in some bird sanctuary.

8.2.1(b) Let n ∈ N = {1, 2, . . .}, i.e., n is a positive integer. Do the same as in
part (a) with 21 and 10 replaced by, respectively, 2n+ 1 and n.

8.2.1(c) Assume that a village has exactly 21 profs and 22 bird sanctuaries, and that
each village prof resides in a single bird sanctuary. Briefly explain—in 75
English words or fewer, and ideally closer to 20—why there must be at least
one empty bird sanctuary.

8.2.1(d) Assume that a village has exactly 20 profs and 22 bird sanctuaries, and that
each village prof resides in a single bird sanctuary. Briefly explain—in 75
English words or fewer, and ideally closer to 20—why there must be at least
two empty bird sanctuaries.

8.2.1(e) Let k, n ∈ N = {1, 2, . . .}, i.e., n, k are positive integers. Assume that a
village has exactly n profs and n+k bird sanctuaries, and that each village
prof resides in a single bird sanctuary. Briefly explain why there must be
at least k empty bird sancuatries.

Exercise 8.2.2. The point of this exercise is to give a gentle introduction to the
theory of block designs, starting with the pigeon hole principle—a very degenerate
special case—and building from there. [As of Sept 2021, Wikipedia uses the nota-
tion: X, v, b, r, k, λ for, respectively, the point set, v = |X|, the number of blocks, r
the number of blocks containing a given point, k the number of points in a block,
λ = number of blocks containing any 2 (or more generally t) distinct points. Fur-
thermore, we show that if we do not insist on distinct points in blocks, etc., and
count with multiplicities, then we get some easy but crude inequalities.]

OLDER STUFF: Let m,n, k ∈ N be positive. Assume that for some m ∈ Z,
a village has exactly m profs, and n bird sanctuaries. Assume that in September,
each prof makes exactly k one-hour visits to the bird sanctuaries of the village
(and visits cannot overlap). At first, we assume that profs can visit the same bird
sancuatry any number of times.

8.2.2(a) Consider the case k = 1. ETC.
8.2.2(b) Let t ∈ N, and assume that each bird santuary is visited at least t different

profs. For which quadruples m,n, k, t ∈ N is this possible.
8.2.2(c) Now, we let the proofs visit the same bird sanctuary as many times as they

like.
8.2.2(d) Similarly, but count each prof visit “with multiplicites” ADD DEFINITON.

ETC.
8.2.2(e) Which combination of the above assumptions makes the problem easiest to

solve and why?

Exercise 8.2.3. Put another exercise here.

Exercise 8.2.4. Put another exercise here.
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8.3. Negative Self-Referencing and Related Exercises (new as of Fall
2021).

Exercise 8.3.1. The Rose family has four people: Johnny, Moira, David, and
Alexis. Let R be the set consisting of these four people, i.e.,

R = {Johnny, Moira, David, Alexis}.

It is given that:

Johnny: loves everyone;
Moira: loves (and only loves) Jonny and Moira;
David: loves no one; and
Alexis: loves (and only loves) David and Alexis.

Let

S = {r ∈ R | r does not love themself} = {r ∈ R | r does not love r},

i.e., S is the subset of R that consists of each person who does not love themself 5.

8.3.1(a) What is S? In other words, list the elements between braces ({, }).
8.3.1(b) Explain why if David does not love themself, then the set S cannot equal

the set of people whom David loves, i.e., the empty set, regardless of whom
anyone else loves.

Exercise 8.3.2. Same as Exercise 8.3.1, with the modification that

Johnny: loves (and only loves) Johnny and Moira;
Moira: loves everyone;
David: loves no one; and
Alexis: loves no one.

Exercise 8.3.3. Same as Exercise 8.3.1, with the modification that no one loves
anyone.

Exercise 8.3.4. Consider the setting in Exercise 8.3.1, with the modification that
everyone loves everyone.

8.3.4(a) What is S?
8.3.4(b) Explain why if David loves themself, then the set S cannot equal the set

of people whom David loves, i.e., all of R, regardless of whom anyone else
loves.

Exercise 8.3.5. Consider the setting of Exercise 8.3.1. Draw a table of who loves
whom, and explain why the set S is said to be constructed “by diagonalization.”

Exercise 8.3.6. Consider the setting of Exercise 8.3.2. Draw a table of who loves
whom, and explain why the set S is said to be constructed “by diagonalization.”

Exercise 8.3.7. Consider the setting of Exercise 8.3.3. Draw a table of who loves
whom, and explain why the set S is said to be constructed “by diagonalization.”

Exercise 8.3.8. Consider the setting of Exercise 8.3.4. Draw a table of who loves
whom, and explain why the set S is said to be constructed “by diagonalization.”

5We thank Sophie MacDonald who pointed out to us this singular, gender neutral form in Fall
2021.
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Exercise 8.3.9. A village has five residents: Martin, Short, Gomez, Colbert, and
Batiste. Let V be the set consisting of these five people, i.e.,

V = {Martin, Short, Gomez, Colbert, Batiste}.

It is given that:

Martin: thinks that Martin and Short are old, and the rest are not old;
Short: thinks that Martin is old, and the rest are not old;
Gomez: thinks that Martin, Short, and Colbert are old, and the rest are not

old;
Colbert: thinks that Martin and Short are old, and the rest are not old; and
Batiste: thinks that no one is old.

S = {v ∈ V | v does not think of themself as old},

8.3.9(a) What is S?
8.3.9(b) Explain why if Martin thinks of themself as old, then S does not equal the

subset of V whom Martin thinks are old, regardless of what anyone else
thinks.

8.3.9(c) Explain why if Batiste thinks that no one is old, then S does not equal the
subset of V whom Batiste thinks are old, regardless of what anyone else
thinks.

Exercise 8.3.10. Consider the same situation as Exercise 8.3.9. Let f : V → V
be the function (map, morphism, etc.) given by:

f(Martin) = Short, f(Short) = Gomez, f(Gomez) = Colbert,

f(Colbert) = Batiste, f(Batiste) = Martin.

(Notice that f is a bijection, and therefore has an inverse function, f−1.) Let

S = {v ∈ V | v does not think of themself as old},

and

S′ = {v ∈ V | v does not think of f(v) as old}.

8.3.10(a) Explain why if Gomez does not think that Gomez, themself, is old, then
the set S above does not equal the set of people whom Gomez thinks are
old, regardless of what anyone else thinks.

8.3.10(b) Explain why if Gomez thinks that Colbert is old, then the set S′ above
does not equal the set

S′′ = {v ∈ V | v thinks of f(v) as old},

regardless of what anyone else thinks.
8.3.10(c) Explain why if Batiste thinks that no one is old, then both sets S and S′

above do not equal the set of people whom Batiste thinks are old, regardless
of what anyone else thinks.

8.3.10(d) If f : V → V were any other function—not necessarily a bijection—would
part (c) still be true?

Exercise 8.3.11. Explain why the following questions can’t be answered either
yes (true) or no (false).
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8.3.11(a) In a certain village, Chris holds accountable each person who does not
hold themself accountable (and no one else). Does Chris hold themself
accountable?

8.3.11(b) In a certain village, Geddy is blamed by each person who does not blame
themself (and by no one else). Is Geddy blamed by themself?

8.3.11(c) In a certain village, Breyer judges each person who does not judge themself
(and no one else). Does Breyer judge themself?

8.3.11(d) In a certain village, Sandy teaches each person who does not teach themself
(and no one else). Does Sandy teach themself?

8.4. Problems Phrased in Terms of Pigeons/Profs and Ice Cream.

In Fall 2021, one student asked if the diagonal is essential in Cantor’s
Theorem. The next few exercises address this. See also Theorem 5.8.

These exercises use the terms injection, bijection, surjection, and, at times, (one-
to-one) correspondence (a synonym for bijection); these terms are defined just below
Definition 4.2 (page 203) of [Sip].

Exercise 8.4.1. Let P, I be sets, and let ι : P → I be an injection. Let Result be
a function P × I → {yes, no}.

8.4.1(a) Briefly explain why if ι is an injection of finite sets, there exists at least
one L ⊂ I satisfying

(9) ∀p ∈ P (for all p in P), ι(p) ∈ L ⇐⇒ Result
(
p, ι(p)

)
= no.

8.4.1(b) Briefly explain why if ι is a bijection, then the inverse function, ι−1, of ι
exists, and (9) is equivalent to

(10) L = {i ∈ I | Result
(
ι−1(i), i

)
= no}.

8.4.1(c) If ι : P → I is an injection, can ι−1 exist if ι is not a bijection? Briefly
explain your answer.

8.4.1(d) If P, I are finite sets, how many subsets L ⊂ I satisfy (9)? Give a formula
involving |P|, |I|, and briefly justify your formula.

8.4.1(e) Let L ⊂ I be any subset of I satisfying (9). For any p ∈ P, let LIKING(p)
be the subset of I given by

(11) LIKING(p)
def
= {i ∈ I | Result(p, i) = yes}.

Show that for all p ∈ P, L 6= LIKING(p).
8.4.1(f) Explain why this means that the map LIKING: P → POWER(I) is not

surjective.

Exercise 8.4.2. A village has three residents: Prof. Hummus, Prof. Pita,
Prof. Falafel, and three foods: hummus, pita, falafel. It is given that:

Prof. Hummus: likes hummus and pita, but not falafel.
Prof. Pita: likes hummus and falafel, but not pita.
Prof. Falafel: likes all three foods.

Let

P = {Prof. Hummus, Prof. Pita, Prof. Falafel},
I = {hummus, pita, falafel}.



UNCOMPUTABILITY OR RUINING THE SUPRISES IN CPSC421/501 25

8.4.2(a) Let ι : P → I be the map given by

ι(Prof. Hummus) = hummus, ι(Prof. Pita) = pita, ι(Prof. Falafel) = falafel.

Define Result : P × I → {yes, no} be the function given by

Result(p, i) =

{
yes if Prof. p likes food i, and
no if Prof. p does not like food i.

Represent the Result function as a table, similar to class on Thursday
(September 23).

8.4.2(b) Use Exercise 8.4.1 to construct a set L ∈ POWER(I) that is not in the
image of the function LIKING given by (11).

8.4.2(c) Explain why if ι : P → I is any function such that ι(Prof. Hummus) =
hummus, then any L satisfying (9) cannot equal LIKING(Prof. Hummus),
regardless of the rest of the values of ι.

8.4.2(d) Do the same where Prof. Hummus is replaced by Prof. Falafel, and hummus
is replaced by falafel.

Exercise 8.4.3. A village has three residents: Prof. Hummus, Prof. Pita,
Prof. Falafel, and four foods: hummus, pita, falafel, and chalva. It is given that:

Prof. Hummus: likes hummus, pita, and chalva, but not falafel.
Prof. Pita: likes hummus, falafel, and chalva, but not pita.
Prof. Falafel: likes all four foods.

[Therefore everyone in the village likes hummus and chalva.] Let

P = {Prof. Hummus, Prof. Pita, Prof. Falafel},
I = {hummus, pita, falafel, chalva}.

8.4.3(a) Let ι : P → I be the map given by

ι(Prof. Hummus) = chalva, ι(Prof. Pita) = hummus, ι(Prof. Falafel) = falafel.

Define Result : P × I → {yes, no} be the function given by

Result(p, i) =

{
yes if Prof. p likes food i, and
no if Prof. p does not like food i.

Represent the Result function as a table, similar to class on Thursday
(September 23).

8.4.3(b) Use Exercise 8.4.1 to construct a set L ∈ POWER(I) that is not in the
image of the function LIKING given by (11).

8.4.3(c) Explain why if ι : P → I is any function such that ι(Prof. Hummus) =
chalva, then any L satisfying (9) cannot equal LIKING(Prof. Hummus),
regardless of the rest of the values of ι.

8.5. Exercises on Universal Turing Machines: Mechanics.

Exercise 8.5.1. Let Σ = {1, 2}, let L = Σ∗.

8.5.1(a) Give a Turning machine M = (Q,Σ,Γ, δ, q0, qacc, qrej, blank) that (1) recog-
nizes L, (2) has q0 different from both qacc and qrej, and (3) has the product
|Q| |Γ| as small as you can subject to (1) and (2) (or reasonably small, see
the rest of the question).

8.5.1(b) Giave a standardized Turing machine that recognizes the same language as
the above machine.
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8.5.1(c) Write the above standardized Turing machine as a word/string over ΣWow!

as described in class notes (November 16 and 18).
8.5.1(d) Write the above standardized Turing machine as a word/string over ΣWow!

and append to it the input 2121, as described in class notes (November 16
and 18).

8.5.1(e) Explain—without actually writing down the word/string—how to Write
the above standardized Turing machine as a word/string over ΣWow! and
append to it the input 212121, as described in class notes (November 16
and 18).

Exercise 8.5.2. Same problem as Exericse 8.5.1 for the language L = ∅.

Exercise 8.5.3. Same problem as Exericse 8.5.1 for the language L described by
the regular expression 1(1 ∪ 2)∗.

Exercise 8.5.4. Same problem as Exericse 8.5.1 for the language L described by
the regular expression (1 ∪ 2)∗2.

Exercise 8.5.5. Is the set of standardized Turing machines countable or uncount-
able? Explain.

Exercise 8.5.6. Is the set/class/family/etc. of (all) Turing machines countable or
something else (e.g., uncountable, so large that it isn’t even a class, etc.)? Explain.

INSERT MORE EXERCISES HERE

8.6. Exercises on Expressive Program-Input Systems, Universal Pro-
grams and Delightful Programs.

Exercise 8.6.1. Let Σ = {1, 2}, let L be the language described by the regular
expression 1(1 ∪ 2)∗.

8.6.1(a) Give a Turing machine recoginizing L.
8.6.1(b) Give a Turing machine recoginizing the complement of L.

Exercise 8.6.2. Let Σ = {1, 2}.
8.6.2(a) Give a Turing machine, M , with the following behaviour:

(a) on words described by the regular expression 1(1 ∪ 2)∗, the Turing
machine halts in the accept state;

(b) on words described by the regular expression 211(1 ∪ 2)∗, the Turing
machine halts in the reject state;

(c) on words described by the regular expression 222(1 ∪ 2)∗, the Turing
machine “loops;” and

(d) on all other words, your machine can behave as you choose.
8.6.2(b) For the Turing machine, M , you gave, give a machine M ′ whose result is the

negation of the result of M (recall, by definition, ¬yes = no, ¬no = yes,
¬loops = loops, i.e., the negation of “accepts” is “rejects” and vice versa,
and the negation of “loops” is “loops”).

Exercise 8.6.3. Consider the proof in [Sip] that the acceptance problem is unde-
cidable, page 207. Does the description of the machine H determine the result of
H on all inputs, or just some particular inputs? Explain.

INSERT MORE EXERCISES HERE
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8.7. A Hierarchy of Acceptance, a Hierarchy of Halting.

Exercise 8.7.1. Let ΣWow! be as in (8). Let π : ΣWow! → [5] = {1, . . . , 5} be an
arbitrary bijection.

8.7.1(a) If w = σ1 . . . σn ∈ Σ∗Wow! is a word, let

π(w) = π(σ1) . . . π(σn).

Does this give a bijection between elements of Σ∗Wow! and elements of [5]∗?
Explain.

8.7.1(b) If L is a language over ΣWow!, let

(12) π(L) = {π(w) | w ∈ L}.

Does this give a bijection between laguages over Σ∗Wow! and languages over
[5]∗? Explain.

Exercise 8.7.2. Let s ∈ N, and let Σ = [s] = {1, . . . , s}.
8.7.2(a) Explain how to define a standardized 2-tape Turing machine—using the

idea of a regular standardized (1-tape) Turing machine—in a way that
any 2-tape Turing machine for a language over Σ has an equivalent stan-
dardized machine that returns the same result (accept, reject, loops, i.e.,
yes, no, loops).

8.7.2(b) Do the same for k-tapes for k ∈ N for any k ≥ 3.
8.7.2(c) Can you define a standardized Turing machine that allows you to first write

down a value of k and then describe a standardized k-tape machine? Ex-
plain.

8.7.2(d) Let s′ ∈ N, Σoracle = [s′] = {1, . . . , s′}, and A ⊂ Σ∗. Can you define a
standardized oracle Turing machine that has access to a single oracle A,
and some standardized Turing machine as in part (c)? What conventions
do you have specify?

Exercise 8.7.3. Let A ⊂ Σ∗ be any fixed language, A, over an alphabet Σ of the
form {1, . . . , s} for some s ∈ N. Let P be the set of all standardized oracle Turing
machines that can make an oracle query to A, standardized appropriately (one way
of standardizing is given in the above exercises). Let I = Σ∗.

8.7.3(a) Show that the result of running any oracle Turing machine in P on an input
in I gives an expressive program-input system.

8.7.3(b) Show that this expressive program-input system has a universal program.
8.7.3(c) Conclude that this program-input has a delightful program.
8.7.3(d) Conclude that the acceptance problem in this program-input is undecidable,

i.e., there is no Turing machine with oracle A that decides the acceptance
problem for Turing machines with oracle A.

Exercise 8.7.4. Let A ⊂ Σ∗ be any fixed language, A, over an alphabet Σ of the
form {1, . . . , s} for some s ∈ N. Let us further assume that s ≥ 5, so that we may
identify ΣWow! with a subset of Σ = [s], and that we have a standardization of all
multitape Turing machines as described in the problems above. Let

B = ACCEPTANCEA = ACCEPTANCEoracle A.
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8.7.4(a) Show that if M is any oracle Turing machine with an oracle call to A, and
w is an input to M , then after some preprocessing one can make a single
oracle call to B to determine whether or not M accepts w.

8.7.4(b) Hence conclude that if an oracle Turing machine MA decides a language,
L, then L is also decided by some oracle Turing machine (M ′)B (i.e., an
oracle machine that calls B, rather than A).

8.7.4(c) Using DecidableΣ(A) to denote the class of languages over Σ decidable with
an oracle A Turing machine, conclude that

Decidable(A) ⊂ Decidable(B) = Decidable
(
ACCEPTANCEA

)
8.7.4(d) Explain why B ∈ Decidable(B) (immediately) and, from the above, B /∈

Decidable(A).
8.7.4(e) Conclude that there is a hierarchy of Turing machine oracles

∅, ACCEPTANCE, ACCEPTANCEACCEPTANCE, ACCEPTANCEACCEPTANCEACCEPTANCE

, . . .

of successively more powerful oracles, in the sense that there is a sequence
of strict inclusions

Decidable(∅) ⊂ Decidable(ACCEPTANCE) ⊂ Decidable
(

ACCEPTANCEACCEPTANCE
)
⊂ · · ·

Exercise 8.7.5. Same exercise as above, except with ACCEPTANCE replaced
everywhere with HALT.

Exercise 8.7.6. In the sequence

∅, ACCEPTANCE, ACCEPTANCEACCEPTANCE, ACCEPTANCEACCEPTANCEACCEPTANCE

, . . . ,

should the first term be ∅ or its complement, Σ∗? Does it really matter?

8.8. Insert Additional Exercises Here. INSERT EXERCISES HERE

9. EXERCISES FROM PREVIOUS YEARS (USING DIFFERENT
NOTATION, ETC.)

Here are some homeworks for previous years.
N.B. The terminology and documents have changed over the years. Hence I am

including this material to show you how these problems have evolved over the years.

9.1. Homework 1, 2019. Please note:

(1) You must justify all answers; no credit is given for a correct answer without
justification.

(2) Proofs should be written out formally.
(3) Homework that is difficult to read may not be graded.
(4) You may work together on homework, but you must write up your own

solutions individually. You must acknowledge with whom you worked.
You must also acknowledge any sources you have used beyond the textbook
and two articles on the class website.

———————————————————

In these exercises, “the handout” refers to the article “Self-referencing, Uncount-
ability, and Uncomputability” on the 421/501 homepage.
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(1) Consider the statement: “Alex cuts the hair of those (and only those)
who do not cut their own hair.” Is there a problem with this statement?
Explain. To which “paradox” in the handout is this similar? Explain.

(2) Let W be the four element set

W = {one, two, plus, times}.
Ascribe a “meaning” to each sentence with words from W (i.e., each string
over the alphabet W ) in the usual way of evaluating expressions, so that

one plus two times two means 1 + 2× 2 = 5,

two times two times two means 2× 2× 2 = 8,

and

plus times two is meaningless,

one plus two times is meaningless,

one two is meaningless;

each sentence either “means” some positive integer or is “meaningless.”
(a) Give two different sentences that both “mean” 10.
(b) Explain why every positive integer is the “meaning” of some sentence

with words from W .
(c) Explain why every positive integer n is the “meaning” of some sentence

of size at most C(1 + log2 n)2 for some constant C ∈ R independent
of n; your explanation should give a value for C.

(3) Consider the five element set

U = W ∪ {moo},
where W is the set in Exercise 2 with the ascribed meanings there, and
where moo has the following meaning:
(a) if moo appears anywhere after the first word of a sentence, then the

sentence is meaningless,
(b) if moo appears only once and at the beginning of a sentence, then we

evaluate the rest of the sentence (as usual), and
(i) if the rest evaluates to the integer k, then the sentence means

“the smallest positive integer not described by a sentence of k
words or fewer,” and

(ii) if the rest evaluates to meaningless, then the sentence is mean-
ingless.

For example, “moo moo” and “moo plus times two” are meaningless, and
“moo two times two” means “the smallest positive integer not described
by a sentence of four words or fewer.”
(a) What is the meaning of “moo one”?
(b) What is paradoxical in trying to ascribe a meaning to “moo two”?
(c) To which “paradox” in the handout is this similar? Explain.
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(4) Which of the following maps are injections (i.e., one-to-one), and which are
surjections (i.e., onto)? Briefly justify your answer.
(a) f : N→ N given by f(x) = x+ 1.
(b) f : N→ N given by f(x) = x2.
(c) f : Z→ Z given by f(x) = x+ 1.
(d) f : Z→ Z given by f(x) = x2.

(5) If f : S → T and g : T → U are both injective (i.e., one-to-one), is g ◦ f
(which is a map S → U) necessarily injective? Justify your answer.

(6) Let N2 = N× N, i.e.,

N2 = {(n1, n2) | n1, n2 ∈ N}.
(See Chapter 0 of [Sip].)
(a) Show that N2 is countable.
(b) Show that N3 = N× N× N is countable.

(7) Let S = {a, b, c} and let f : S → Power(S) any function such that

a /∈ f(a), b /∈ f(b), c /∈ f(c).

(a) Explain why f(a) cannot be all of S.
(b) Explain why none of f(a), f(b), f(c) equal S.
(c) What is the set

T = {s ∈ S | s /∈ f(s)}?

(8) Let S = {a, b, c} and let f : S → Power(S) any function such that

a /∈ f(a), b ∈ f(b), c /∈ f(c).

(a) Explain why f(b) cannot equal {a, c}.
(b) Explain why none of f(a), f(c) equal {a, c}.
(c) What is the set

T = {s ∈ S | s /∈ f(s)}?

(End of Homework Problems to be Submitted for Credit.)
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Exercises Beyond the Homework (not for credit, solutions will not be
released):

Cancellation Property: (1) We say that a map (of sets) f : S → T has the
left cancellation property if for any two maps g, h from a set U → S we
have fg = fh (i.e., the map f ◦g : U → T equals the map f ◦h) implies
that g = h. Show that this property holds of f iff f is injective.

(2) Formulate a similar right cancellation property for a map f : S → T
and show that it is equivalent to f being surjective.

[This exercise shows that the notions of “injective” and “surjective” can
be defined just in terms of sets and maps (also respectively called objects
and morphisms (or arrows) in category theory).]

Unique Positive Rationals: Say that we list the positive rationals—
allowing for repitition—as we did in class:

1/1, 2/1, 1/2, 3/1, 2/2, 1/3, . . .

Show that as N →∞, the number of distinct rational numbers in the first
N terms of this sequence is

N
(

(1− 1/4) (1− 1/9) (1− 1/25) (1− 1/49) . . .
)

+ o(N)

(i.e., 6N/π2+o(N), using a well-known value of the Riemann Zeta function).
[See the last page of this document for some hints; it is easier to see

roughly why the above result is true than to give a rigorous proof of this
result.]
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Sample Exercises With Solutions:

People often ask me how much detail they need in giving explanations for the
homework exercises. Here are some examples. The material in brackets [like this]
are optional.

Sample Question Needing a Proof: If f : S → T and g : T → U are sur-
jective (i.e., onto) is g ◦ f (a map S → U) is necessarily surjective? Justify
your answer.

Answer: Yes.
[To show that g ◦ f is surjective, we must show that if u ∈ U , then there

is an s ∈ S such that (g ◦ f)(s) = u.]
If u ∈ U , then since g is surjective there is a t ∈ T such that g(t) = u.

Since f is surjective, there is an s ∈ S such that f(s) = t. Hence

(g ◦ f)(s) = g(f(s)) = g(t) = u.

Therefore each u ∈ U is g ◦ f applied to some element of S, and so g ◦ f is
surjective.

Sample Question Needing a Counterexample: If f : S → T is injective,
and g : T → U is surjective, is g ◦ f is necessarily injective? Justify your
answer.

Answer: No.
[To show that g ◦f is not necessarily injective, we must find one example

of such an f and g where g ◦ f is not injective.]
Let S = T = {a, b} and U = {c}; let f : S → T be the identity map (i.e.,

f(a) = a and f(b) = b), and let g : T → U (there is only one possible g in
this case) be given by g(a) = g(b) = c.

Then f is injective (since f(a) 6= f(b)) and g is surjective, since U = {c}
and c = g(a)). However g ◦ f is not injective, since (g ◦ f)(a) = c =
(g ◦ f)(b).

Injectivitiy and Surjectivity of a Given Map: If f : N → N is given by
f(n) = 2n+ 5, is f injective? Is f surjective?

Answer: f is injective, because if f(n1) = f(n2), then 2n1 + 5 = 2n2 + 5
and therefore n1 = n2.

[Hence f maps distinct values of N to distinct values of N, i.e., n1 6= n2

implies that f(n1) 6= f(n2).]
f is not surjective, because there is no value n ∈ N such that f(n) = 1: if

such an n existed, then 2n+ 5 = 1 and so n = −2 which is not an element
of N.
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Hints for Exercises Beyond: Hints appear on the page after this.
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[Hint: It is easier to see why there should be roughly 6N/π2 distinct rationals in
the first N terms than to give a rigorous proof of this result. For a rigorous proof,
you could start by showing that the number of a/b in a sequence of length N where
a, b are both divisible by two is (1) at most N/4 (with no o(N) term) and (2) at
least N/4 + o(N). Then consider a, b which are either both divisible by two and/or
both divisible by three. Etc. To give a rigorous proof of the 6N/π2 + o(N) result
you might use the fact that sum of 1/p2 over all prime numbers, p, converges, and
hence the “infinite tails” of this sum tend to 0.]

(1) Show that a countable union of countable sets is countable; i.e., if C1, C2, . . .
are countable sets, show that C1∪C2∪· · · is countable. If Σ is a countable
alphabet, is Σ∗ countable?

(2) Let R be the real numbers, and let F be the set of all functions from the
reals to the reals. Show that |R| < |F |. Can you generalize this statement?

(3) Pick a standard programming language (C, Java, awk, perl, etc.), and
outline in a few paragraphs that they satisfy Axioms 1–5. (Axioms 2 and
4 are the only serious issues.)

(4) Does Axiom 5 cover all reasonable functions, f , used in combinations, or
does it miss a few? [Hint: What happens if we simply “ignore”Q?] Describe
more functions, f , for which Axiom 5 would hold in the example of a
standard programming language or Turing machine.

(5) Consider Paradox 4 of Section 1. [This is the basis for Gödel’s Incomplete-
ness Theorems.] Argue informally that if (1) any statement in your setting
that is provable is true, and (2) no statement in your setting can be both
true and false, and (3) you can construct the statement of Paradox 4 in
your setting, then this statement must be true but not provably true.

(6) Consider Paradox 3 of Section 1. [This is usually called the “Berry Para-
dox;” feel free to look it up somewhere.]
(a) Let W be the four element set

W = {one, two, plus, times}.

Ascribe a “meaning” to each sentence with words from W (i.e., each
string over the alphabet W ) in the usual way of evaluating expressions,
so that

one plus two times two means 1 + 2× 2 = 5,

plus times two plus is meaningless,

and each sentence either “means” some positive integer or is “mean-
ingless.” Show that every positive integer is the “meaning” of some
sentence with words from W .

(b) Show, more precisely, that there is a constant, C, such that any
positive integer, n, can be described by a W -sentence of at most
1 + C(log2 n)2 words.

(c) Consider the five element set

U = W ∪ {moo}

with the following meaning for moo:
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(i) if it appears anywhere after the first word of a sentence, then
the sentence is meaningless,

(ii) if it appears only once and at the beginning of a sentence, then
we evaluate the rest of the sentence (as usual), and
(A) if the rest evaluates to the integer k, then the sentence

means “the smallest positive integer not described by a sen-
tence of k words or fewer,” and

(B) if the rest evaluates to meaningless, then the sentence is
meaningless.

For example, “moo moo” and “moo plus times two” are meaningless,
and “moo two times two” means “the smallest positive integer not
described by a sentence of four words or fewer.” What is the meaning
of “moo one”?

(d) What seems paradoxical in trying to ascribe a meaning to “moo two”?
What do you think is the “best” interpretation of “moo two”, and why
won’t this completely satisfy your notion of the word “describe”? [If
this last question seems strange or wrong, make up your own version
of this question and answer it.]

(7) With axioms and notation in Section 4, let

Lhalt = {EncodeBoth(P, x) | P ∈ P, x ∈ I, and Result(P, x) 6= loops}
Assuming we have widened Axiom 5 appropriately, as in Exercise 2, show
that Lhalt cannot be decided. [Hint: Assume that it can be decided, and
use this to show that Lyes can be decided.]

(8) Consider the languages:
(a) Java programs that produce some output;
(b) Java programs that reach line number 40;
(c) Two Java programs that give identical outputs on every input.

Explain why each of these problems is acceptable but not decidable by
Java programs (or Turing machines or C programs or . . .). [Hint: See the
previous exercise to prove that something is not decidable. Notice that we
have not made the notion of a “Java program” precise; use may assume
any definition and basic properties of Java programs.] [Note that “Java”
can be replaced by “C,” “awk,” “perl,” “Turing machine,” etc.]

(9) Axioms 3 and 4 are stated in terms of programs, P and P ′; how-
ever, they don’t have much to do with P and P ′ when dealing with
Java programs. For example, P ′ in Axiom 3 just runs P and then
does some Java “post-processing” to change a yes to a no and vice
versa. Similarly Axiom 4 just “pre-processes” to change EncodeProg(Q)
to EncodeBoth(Q,EncodeProg(Q)) and then run P . Unfortunately, our
axioms and setup doesn’t allow a program to produce output other than
“yes” or “no” and doesn’t allow for composition, i.e., using the output
of a first program as input to a second program (as is done in pre- and
post-processing).

Write down a set of axioms that generalizes those of Section 4, where
Result : P × I → I ∪ {loops} and I contains the elements yes and no

but does not contain loops. Make sure Axioms 3 and 4 are not axioms
but result from the computability of certain functions from I to itself, and
some sort of “composition axiom.”
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(10) Consider the following program:

10 A = 3^(3^(41^6)) - 2^7

20 COMMENT Here is a loop

30 IF ( A MOD 2 == 1 ) THEN A = A * 3 + 1

40 ELSE A = A / 2

50 IF ( A != 1 ) THEN GOTO 30

60 COMMENT If we get to here then A is 1

70 PRINT("WE ARE DONE")

In this programming language, the words IF, THEN, GOTO, ELSE, COM-
MENT, and PRINT have their intuitive meaning (hopefully it is more or
less clear); “GOTO 30” means go to line number 30; line numbers appear
at the beginning of a statement; the four operators

+,*,MOD,^

have their usual meaning. Finally, this programming language is equipped
with “long integers” that can grow to be of any size (via some dynamic
memory allocation scheme).

Imagine that you’d like to know if lines 60 and 70 of this program are
live or dead. Imagine further that you’d like to know this for all variants
of line 10 that set A to some fixed value, and that even allows for more
complicated procedures instead of lines 30 to 50. Explain why it might be
hard to decide (find a method that always gives an answer in finite time) if
the program has dead code. Explain why it is definitely undecidable in the
case where lines 30 to 50 are replaced by some very complicated function
of A.

(11) For a set S and an integer n ≥ 1, let

nS = {f | f : S → {0, 1, . . . , n− 1}},

be the set of all functions from S to {0, 1, . . . , n− 1}.
(a) Show that for n = 2, this definition of 2S is “the same” as our original

definition in class (where 2S was defined to be the power set of S, i.e.,
the set of all subsets of S). In other words, give a natural bijection
between the power set of S and the set of all functions from S to {0, 1}.

(b) Show that if m < n are positive integers, there is a natural injection
from mS to nS for any set S.

(c) Show that there is a simple bijection between 4N and 2N.
(d) Explain why the axioms of set theory should imply that there is a

bijection between 2N and 3N. Do you think it is difficult to describe
such a bijection? Explain.

(12) Consider the map α from 2N to the real interval [0, 1] taking f : N→ {0, 1}
to

α(f) = f(1)/2 + f(2)/4 + · · ·+ f(n)/2n + · · · .

By a diadic rational we mean a real number of the form i/2j for some
integers i and j.
(a) Show that if r is a diadic rational strictly between 0 and 1, then there

are exactly two elements of 2N that map to r under α, and otherwise
there is exactly one element.
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(b) Let Z be the subset of 2N consisting of those functions, f , such that
for some integer, M , we have f(m) = 0 if m ≥M . Show that α gives
a bijection between 2N \ Z and (0, 1].

(c) Similarly show that there is a natural bijection between 3N \ Z ′ and
(0, 1], where Z ′ is the subset of 3N consisting of those f such that for
some integer, M , we have f(m) = 0 if m ≥M .

(d) Describe (more or less) a bijection between Z and Z ′, and use this
bijection to give a bijection between 2N and 3N.

(13) Show that if β : 2N → R is defined by

β(f) = f(1)/3 + f(2)/9 + · · ·+ f(n)/3n + · · · ,

then β is an injection. Construct a sujection from 2N to R. Conclude that
there is a bijection between 2N and R. Do you think that such a bijection
is easy to describe?

(14) Below we shall give examples of P, I and a Result function, as in Axiom 1.
In each of the examples below, answer the following questions: (1) Can you
find functions EncodeProg and EncodeBoth that make Axiom 2 satisfied? If
so, what is Lyes, and what are examples of a universal program, U , stated in
Axiom 2? (2) Do Axioms 3, 4, and 6 hold? (3) Assuming Axioms 2–4 hold,
what does the theorem that Lyes is undecidable mean in this situation? Is
it interesting?
(a) P, I are arbitrary sets, and Result always returns yes (i.e., for all

p ∈ P, i ∈ I Result(p, i) = yes).
(b) P, I are arbitrary sets, and Result always returns loops.
(c) I is the set of strings of ASCII characters, P is the set of legal Java

programs (or C or BASIC or Fortran or etc.); make your life simple
by assuming that a legal Java program cannot have the ASCII string
“HERECOMESTHEINPUT” occur anywhere inside it as a substring
(this makes EncodeBoth simple). Let Result(p, i) be (1) yes if p on
input i writes “CPSC 421 is fanstastic.” as its first line of output,
(2) no if p on input i writes “CPSC 421 is great.” as its first line of
output, and (3) loops otherwise.

Appendix A. Decision Problems, Alphabets, Strings, and Languages

In this section we explain the connection between algorithms, decision problems,
and some of the definitions in Chapter 0 of [Sip]. We also discuss descriptions,
needed starting in Chapter 3 of [Sip].

A.1. Decision Problems and Languages. The term decision problem refers to
the following type of problems:

(1) Given a natural number, n ∈ N, give an algorithm to decide if n is a prime.
(2) Given a natural number, n ∈ N, give an algorithm to decide if n is a perfect

square.
(3) Given a natural number, n ∈ N, give an algorithm to decide if n can be

written as the sum of two prime numbers.
(4) Given sequence of DNA bases, i.e., a string over the alphabet {C,G,A, T},

decide if it contains the string “ACT” as a substring.
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(5) Given an ASCII string, i.e., a finite sequence of ASCII characters6, decide
if it contains the string “CPSC 421” as a substring.

(6) Given an ASCII string, decide if it contains the string “vacation” as a
substring.

(7) Given an ASCII string, decide if it is a valid C program.

Roughly speaking, such problems take an input and say “yes” or “no”; the term
decision problem suggests that you are looking for an algorithm7 to correctly say
“yes” or “no” in a finite amount of time.

To make the term decision problem precise, we use the following definitions.

(1) An alphabet is a finite set, and we refer to its elements as symbols.
(2) If A is an alphabet, a string over A is a finite sequence of elements of A;

we use A∗ to denote the set of all finite strings over A.
(3) If A is an alphabet, a language over A is a subset of A∗.

(People often use letter instead of symbol, and word instead of string.) For example,
with D = {0, 1, . . . , 9}, we use

PRIMES = {s ∈ D∗ | s represents a prime number}
and

SQUARES = {s ∈ D∗ | s represents a perfect square}
Here are examples of elements of PRIMES:

421, 3, 7, 31, 127, 8191, 131071, 524287, 2147483647

where we use the common shorthand for strings:

127 for (1, 2, 7), 131071 for (1, 3, 1, 0, 7, 1), etc.

So PRIMES is a language over the alphabet D; when we say “the decision
problem PRIMES” we refer to this language, but the connotation is that we are
looking for some sort of algorithm to decide whether or not a number is prime.
Here are some examples of strings over D that are not elements of the set PRIMES:

221, 320, 420, 2019.

A.2. Descriptions of Natural Numbers. From our discussion of PRIMES
above, it is not clear if we consider 0127 to be element of PRIMES; we need to
make this more precise. It is reasonable to interpret 0127 as the integer 127 and
to specify that 0127 ∈ PRIMES. However, in [Sip] we will be careful to distinguish
a natural number n ∈ N and

〈n〉 meaning the “description” of n,

i.e., the string that represents n (uniquely, according to some specified convention),
so the natural number 127 has a unique description as the string (1, 2, 7), and
the string (0, 1, 2, 7) is not the description of 127. With this convention, 0127 /∈
PRIMES; this is also reasonable.

[Later in the course we will speak of “the description of a graph” (when studying
graph algorithms), “the description of a Boolean formula” (when studying SAT,
3SAT), “the description of a Turing machine,” etc. In these situtations it will be

6 ASCII this is an alphabet of 256 letters that includes letters, digits, and common punctuation.
7 The term algorithm means different things depending on the context; in CPSC 421 we will

study examples of this (e.g., a DFA, NFA, deterministic Turing machine, a deterministic Turing

machine with an orale A, etc.
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clear why the input to an algorithm should be a description of something (as a
string over some fixed alphabet) rather than the thing itself.]

If n = Z with n = 127, the symbol 〈n〉, meaning the “description of n” can refer
to

(1) “1111111,” when 〈n〉 = 〈n〉2 means the “binary representation of n” (a
unique string over the alphabet {0, 1});

(2) “11201,” when 〈n〉 = 〈n〉3 means the “base 3 representation of n” (a unique
string over the alphabet {0, 1, 2});

(3) “one hundred and twenty-seven,” when 〈n〉 = 〈n〉English means the “English
representation of n” (a unique string over the ASCII alphabet, or at least
an alphabet containing the English letters, a comma, a dash, and a space);

(4) “cent vingt-sept,” similarly for French, 〈n〉 = 〈n〉French

(5) “wa’vatlh wejmaH Soch,” similarly for Klingon8, 〈n〉 = 〈n〉Klingon;
(6) and good old “127,” when 〈n〉 = 〈n〉10 means the “decimal representation

of n.”

Note that haven’t yet specified whether or not ε, the empty string, is considered
to be an element of PRIMES.

A.3. More on Strings. Chapter 0 of [Sip] uses the following notion:

(1) if A is an alphabet and k ∈ Z≥0 = {0, 1, 2 . . .}, a string of length k over A
is a sequence of k elements of A;

(2) we use Ak to denote the set of all strings of length k over A;
(3) equivalently, a string of length k over A is a map [k] → A where [k] =
{1, . . . , k};

(4) by consequence (or convention) A0 = {ε} where ε, called the empty string,
is the unique map ∅ → A;

(5) a string over A is a string over A of some length k ∈ Z≥0;
(6) therefore A∗ is given as

A∗ =
⋃

k∈Z≥0

Ak = A0 ∪ A1 ∪ A2 ∪ · · ·

(7) strings are sometimes called words in other literature;
(8) a letter or symbol of an alphabet, A, is an element of A.

Appendix B. Counting, Power Sets, and Countability

In CPSC 421, for any model of computation that we study (e.g., finite automata,
Turing machines, Python programs), we can easily show that there exist programs
that cannot be solved. The reason is that there are “more” problems than algo-
rithms.

[Unfortunately, this does not identify which problem(s) cannot be solved, it
merely shows that unsolvable problems exist.]

More precisely, we will use Cantor’s theorem to show that the set of languages
over an alphabet is uncountable. This technique uses diagonalization (see Theo-
rem 4.17 and Corollary 4.18 in [Sip]) in a way that looks similar to Russell’s famous
paradox.

8 Source: https://en.wikibooks.org/wiki/Klingon/Numbers.

https://en.wikibooks.org/wiki/Klingon/Numbers


40 JOEL FRIEDMAN

B.1. Injections, Surjections, Bijections, and the Size of a Set. Any finite
set, S, has a size, which we denote by |S|. For example,∣∣{a, b, c}∣∣ = 3,

∣∣{X,Y, Z,W}∣∣ = 4.

To say that S is a smaller set than T , if both are finite sets, just means that
|S| < |T |.

When working with infinite sets, the notion of one set being smaller than another
is much more subtle. To compare the “size” of infinite sets one can use the following
notions.

Definition B.1. Let f : S → T be a map of sets. We say that f is

(1) injective (or one-to-one) if for all s1, s2 ∈ S with s1 6= s2 we have f(s1) 6=
f(s2);

(2) surjective (or onto) if for all t ∈ T there is an s ∈ S with f(s) = t;
(3) bijective (or a one-to-one correspondence) if it is injective and surjective.

You should convince yourself that if S, T are finite sets with |S| < |T |, then there
is no surjective map S → T . See the exercises for related notions.

Definition B.2. Let S, T be two sets. We say that S is the same size as T if there
is a bijection S → T (this is Definition 4.12 on page 203 of [Sip]). We say that S is
smaller than T if there is no surjective map f : S → T .

Example B.3. Chapter 0 of [Sip] uses N to denote the natural numbers

N = {1, 2, 3, . . .}.

The natural numbers is strict subset of the integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
However, N and Z have the same size, since f : N→ Z can be give as

f(1) = 0, f(2) = 1, f(3) = −1, f(4) = 2, f(5) = −2, . . . ,

in other words, f(1) = 0 and for k ∈ N, f(2k) = k and f(2k + 1) = −k.

B.2. Countable Sets.

Definition B.4. We say that an infinite set, S, is countably infinite if there is a
bijection N→ S, i.e., if S is the same size as N. We say that a set is countable if it
is finite or countably infinite. We say that a set is uncountable if it is not countable.

Example B.5. Of course, N is a countable; since Z is of the same size as N (proven
above), Z is countably infinite. In class we will explain why the following sets are
also countable:

(1) the positive rational numbers Q (Example 4.15 in [Sip]);
(2) the rational numbers Q;
(3) the set of words over an alphabet A,

A∗ =
⋃
i≥0

Ai

(an alphabet is any nonempty, finite set).

Example B.6. It is more difficult to prove that a set is uncountable; here are some
examples:

(1) the real numbers R (see Theorem 4.17 in [Sip]);
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(2) the set of languages over an alphabet, A, meaning the set of all subsets of
A∗. We will prove this below; it is also proven as Corollary 4.18 of [Sip],
i.e., page 206, although it is not really a “corollary” of the theorem before
it.)

B.3. Cantor’s Theorem.

Definition B.7. If S is a set, the power set of S, denoted Power(S), is the set of
all subsets of S.

For example, if S is a finite set with n elements, then its power set has 2n (“two
to the power n”) elements.

Theorem B.8 (Cantor’s Theorem). Any set, S, is smaller than its power set; i.e.,
if f : S → Power(S) is any function, then f is not surjective. Specifically, the set

T = {s ∈ S | s /∈ f(s)}

is not in the image of f .

Proof. For the sake of contradiction, assume that there is a t ∈ S such that f(t) =
T . Then either (1) t ∈ T , or (2) t /∈ T .

In case (1), i.e., if t ∈ T , then we derive a contradiction: in this case

t ∈ {s ∈ S | s /∈ f(s)},

which implies that t /∈ f(t); but f(t) = T , and so t /∈ T ; but this contradicts the
assumption that t ∈ T .

In case (2), i.e., if t /∈ T , then we similarly derive a contradiction: we have

t /∈ {s ∈ S | s /∈ f(s)},

which implies that t ∈ f(t), and hence t ∈ T , which contradicts the assumption
that t /∈ T . �

In class we will explain why this proof uses diagonalization; the proof that R is
uncountable is one way to illustrate this. (See Section 4.2 of [Sip].)

Corollary B.9. Let A be an alphabet. Then the set of languages over A is un-
countable. Hence any map from a countable set to the set of decision problems over
A is not surjective.

Proof. The second statement follows from the first and from the definition of un-
countable; so it suffices to prove the first statement.

The set of languages over A equals, by definition, Power(A∗). Let us assume
that Power(A∗) is countable, and derive a contradiction.

The set A∗ is countably infinite, and hence there is a bijection f : A∗ → Z.
If Power(A∗) were countable, there would exist a surjection g : Z → Power(A∗).
Then g ◦ f would give a sujection A∗ → Power(A∗). This is impossible by Cantor’s
theorem. �

Another proof of the corollary above is to use the fact that if f : A → B is a
bijection, then f induces a bijection Power(A)→ Power(B)
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B.4. Unsolvable Problems Exist. In [Sip] we will describe many notions of what
is meant by an “algorithms” (e.g., as described by Turing machines, finite automata,
Python programs, C programs, etc.). In most such notions the set of algorithms is
countable; for example, a program in any fixed language (Python, C, etc.) is just
a finite string.

Assuming that each such algorithm solves a decision problem (i.e., at most one
decision problem) over a fixed language, we get a map from algorithms to decision
problems.

It follows that from the above corollary that there exist decision problems, i.e.,
languages over any fixed alphabet, that cannot be solved by any countable set of
algorithms.
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