Midterm Solutions

CPSC 421/501, Fall 2021

Problem 1 (True/False)

(a) True: Follows from a discussion of NFA's, e.g. Section 1.2 [Sip]
(b) True: essentially because there are only countably many standardized DFA's.
(c) False: The set of languages is in 1-1 correspondence with the set of subsets of words over Σ, and this set of words is (countably) infinite.
(d) False: This can seen numerous ways: for one, the gaps between numbers of the form n^{4} is too large to make this set of integers eventually periodic.
(e) False This set of maps is $1-1$ correspondence with the set of subsets of natural numbers, and this set of numbers is (countably) infinite.

Problem 2

(a)

(b)

We need only make a ϵ connection from the accepting state in part (a) to the initial state and make the initial state the accepting state.

or as state q_{3} can be reduced.

Problem 3

(a) We have that the shortest word in $\operatorname{AccFut}\left(a^{n}\right)$ for $n=0,1,2,3$ is a^{3-n}, and these shortest words are all distinct for $n=0,1,2,3$. Hence $\operatorname{AccFut}\left(a^{n}\right)$ are distinct for $n=0,1,2,3$. However, we easily see that for $n \geq 2$ and even,

$$
\operatorname{AccFut}_{L}\left(a^{n}\right)=a\left(a^{2}\right)^{*}, \quad \operatorname{AccFut}_{L}\left(a^{n+1}\right)=\left(a^{2}\right)^{*}
$$

Hence

$$
\operatorname{AccFut}_{L}\left(a^{2}\right)=\operatorname{AccFut}_{L}\left(a^{4}\right)=\operatorname{AccFut}_{L}\left(a^{6}\right)=\cdots
$$

and similarly

$$
\operatorname{AccFut}_{L}\left(a^{3}\right)=\operatorname{AccFut}_{L}\left(a^{5}\right)=\operatorname{AccFut}_{L}\left(a^{7}\right)=\cdots
$$

Hence there are exactly four different possible "accepting futures," and hence the minimum number of states of DFA accepting L is 4 .
(b)

(c)

Our NFA has no arrows labelled b, since any such letter forces the input to be rejected; the NFA has a path from the initial state to a^{3}, which is the first word in L, and then cycles on a cycle of length two, since L has eventual period 2 at a^{3}. The NFA pictured transitions from a^{3} to the a^{2} state, since this is an equivalent way to cycle to a^{3} (one could have built a cycle from a^{3} to one new state and then cycle back to a^{3}).

Problem 4

Since $f(c)=\{b, c\}$, we have $c \in f(c)$, and therefore $c \notin T$. Since c lies in $f(c)$ and not in T, the sets $f(c)$ and T must be distinct.

