
The University of British Columbia

Final Exam, December 5, 2017

CPSC 421

Closed book examination Time: 2.5 hours

Last Name First Signature

Student Number

Special Instructions:

Two two-sided 8.5 x 11 sheets of notes allowed.

Student Conduct during Examinations
• Each examination candidate must be prepared to produce, upon the request
of the invigilator or examiner, his or her UBCcard for identification.

• Candidates are not permitted to ask questions of the examiners or invigilators,
except in cases of supposed errors or ambiguities in examination questions,
illegible or missing material, or the like.

• No candidate shall be permitted to enter the examination room after the
expiration of one-half hour from the scheduled starting time, or to leave during
the first half hour of the examination. Should the examination run forty-five
(45) minutes or less, no candidate shall be permitted to enter the examination
room once the examination has begun.

• Candidates must conduct themselves honestly and in accordance with es-
tablished rules for a given examination, which will be articulated by the ex-
aminer or invigilator prior to the examination commencing. Should dishonest
behaviour be observed by the examiner(s) or invigilator(s), pleas of accident or
forgetfulness shall not be received.

• Candidates suspected of any of the following, or any other similar prac-
tices, may be immediately dismissed from the examination by the exam-
iner/invigilator, and may be subject to disciplinary action:

(a) speaking or communicating with other candidates, unless otherwise au-
thorized;

(b) purposely exposing written papers to the view of other candidates or
imaging devices;

(c) purposely viewing the written papers of other candidates;
(d) using or having visible at the place of writing any books, papers or other

memory aid devices other than those authorized by the examiner(s); and,
(e) using or operating electronic devices including but not limited to tele-

phones, calculators, computers, or similar devices other than those authorized
by the examiner(s)–(electronic devices other than those authorized by the ex-
aminer(s) must be completely powered down if present at the place of writing).

• Candidates must not destroy or damage any examination material, must hand
in all examination papers, and must not take any examination material from
the examination room without permission of the examiner or invigilator.

• Notwithstanding the above, for any mode of examination that does not fall
into the traditional, paper-based method, examination candidates shall adhere
to any special rules for conduct as established and articulated by the examiner.

• Candidates must follow any additional examination rules or directions com-
municated by the examiner(s) or invigilator(s).

1 16

2 15

3 15

4 15

5 15

Total 76

Page 1 of 7 pages

December 2017 CPSC 421 Name: Page 2 of 7 pages

[16] 1. Circle either T (true) or F (false).
Circle either T for true, or F for false, for each of the statements below:

The set of functions {0, 1} → Z is countable. T F

True: this set of functions is in bijection with Z2 = Z × Z, which is in bijection
with N2, which we know is countable.

The set of functions Z→ {0, 1} is countable. T F

False: this set of functions is in bijection with Power(Z), which is in bijection with
Power(N), which we know is uncountable.

If L′ ≤P L then L′ ∈ PL. T F

True: one can test membership in L′ by applying the reduction from L′ to L
(which is poly time) and then making a single oracle query to L.

If L is undecidable and recognizable, then L’s complement is unrecognizable. T F

True: otherwise L and its complement would both be recognizable, and hence
L (and its complement) would be decidable (by running the two algorithms for
recognizability in parallel).

If L and L′ are in PSPACE then L∗ ∩ L′ is also in PSPACE. T F

True: PSPACE is closed under the star operation and under intersection. (For
the star operation one can use dynamic programming; for intersection one can
run the two algorithms, one after the other.) Hence L∗ is in PSPACE, and hence
L∗ ∩ L′ is in PSPACE.

If L is PSPACE-complete and L′ ∈ NP, then L′ ≤P L. T F

True: NP is contained in PSPACE; hence L′ is in PSPACE, and hence L′ can be
reduced to L in poly time.

If L ∈ P, then there are polynomial size circuits for L. T F

True (see [Sip], Chapter 9), although not covered in 2019.

December 2017 CPSC 421 Name: Page 3 of 7 pages

[15] 2. Give a Turing machine that takes as input, x ∈ {0, 1}∗, and (1) accepts x if x
begins with a 0 and x has exactly two more 0’s than it has 1’s, and (2) rejects x other-
wise. You must explain how your machine works, and explicitly write your choice of
Q,Σ,Γ, δ, q0, qaccept, qreject. To describe δ, you may (1) list its values, or (2) use a diagram as
used in Sipser’s textbook (and class), or (3) give a table of its values as done in class and
the solutions to Homework 10.

SOLUTION

See similar examples on the homework, on Midterm 2019, and on other previous
exams.

December 2017 CPSC 421 Name: Page 4 of 7 pages

[15] 3. Let L be the language of descriptions of a sequence of positive integers n1, . . . , nk,m, t
such that there is an I ⊂ [k] = {1, . . . , k} and a J ⊂ [k] for which(∑

i∈I

ni

)
+ m

(∑
j∈J

nj

)
= t.

Show that L is NP-complete; you may use the fact that SUBSET-SUM and PARTITION
are known to be NP-complete.

SOLUTION

L is in NP: Non-deterministically pick subsets I, J of [k] and check if(∑
i∈I

ni

)
+ m

(∑
j∈J

nj

)
= t.

Since the subsets I, J each require k choices, and k is less than the size of the input, the
choosing and checking can be done in polynomial time.

Any language in NP can be reduced to L: Any language in NP can be reduced to
SUBSET-SUM. So given an instance

〈n1, . . . , nk, t〉

of SUBSET-SUM, it suffices to describe a polynomial time reduction to L. To do this
compute t+ 1 and write down the string

〈n1, . . . , nk, t+ 1, t〉

as an instance of L (i.e., we take m = t + 1 for the variable m above); this clearly can be
done in poly time. This string lies in L iff there are I, J with(∑

i∈I

ni

)
+ (t+ 1)

(∑
j∈J

nj

)
= t;

but this equation can only hold if J is empty (since the ni’s are non-negative), and hence
this equation holds iff (∑

i∈I

ni

)
= t,

which holds iff 〈n1, . . . , nk, t〉 lies in SUBSET-SUM.

December 2017 CPSC 421 Name: Page 5 of 7 pages

[15] 4. Fix an integer k ∈ N. Let L be the language of strings over 0, 1 whose k-th last
symbol is a 1 (and whose length is therefore at least k), i.e.,

L =
{
x1y

∣∣∣ x, y ∈ {0, 1}∗ and |y| = k − 1
}
.

(a) Write an NFA that recognizes L and has at most k + 1 states, and explain how your
NFA works.

SOLUTION

We non-deterministically wait at the initial state, q0, until we see a 1 and then see
exactly k− 1 remaining characters, at which point we accept (since the input is of the
form x1y with |y| = k − 1. Hence the alphabet is Σ = {0, 1} with initial state q0 and
transitions

δ(q0, ε) = ∅, δ(q0, 1) = {q0, q1} δ(q0, 0) = {q0};

the state q1 is reached upon (a non-deterministic amount of waiting followed by) reading
a 1. Hence we set

δ(qi, 0) = δ(qi, 1) = {qi+1}, δ(qi, ε) = ∅

for i = 1, . . . , k − 1, with qk the unique final state and no transitions leaving qk (i.e.,
δ(qk, σ) = ∅ for σ = 0, 1, ε).

Hence the NFA is (Q,Σ, q0, δ, F) where Σ = {0, 1}, Q = {q0, q1, . . . , qk} (which has
k + 1 states), δ : Q× Σε → Q is described above, and F = {qk}.

(b) Prove that any DFA recognizing L has at least 2k states.

SOLUTION

We claim that AccFutL(s) are all distinct as s ranges over all elements of
{0, 1}k. Indeed, if s = σ1 . . . σk and s′ = σ′1 . . . σ

′
k, then for some i ∈ [k] we have

σi 6= σ′i (i.e., the i-th symbol of s, s′ are different). In this case all strings
of length k − i lie in one of AccFutL(s),AccFutL(s′) (according to whether,
respectively σi = 1 or σ′i = 1) and all do not lie in the other.

Hence there are at least 2k distinct values of AccFutL(s) as s varies over all
strings, and hence, by the Myhill-Nerode theorem, any DFA recognizing L
has at least 2k states.

December 2017 CPSC 421 Name: Page 6 of 7 pages

[18] 5. Short Problems. Each question is worth 3 points. Answer each question and
justify your anwer. No credit will be given for a simple yes or no.

(a) Let B be any PSPACE-complete language. Is PB ⊂ PSPACE?

SOLUTION Yes: given a polynomial time algorithm for a Turing machine with

oracle B, each oracle query to B queries a string of size at most polynomial in n,
the input length (since the algorithm runs in polynomia time). Since B is PSPACE-
complete, B lies in PSPACE and hence one can simulate any oracle query to B with
a (deterministic) algorithm that uses space at most polynomial in the string queried,
which is therefore polynomial in n, the input length. The polynomial time algorithm
with simulated oracle queries runs in (1) polynomial space for the algorithm without
the oracle queries (since a polynomial time algorithm uses at most polynomial space),
plus (2) an extra polynomial space for each oracle query (this space can be reused upon
each query); hence this algorithm runs in polynomial space.

(b) Is NP contained in P3SAT?

SOLUTION

Yes: any language, L, in NP has a polynomial time reduction to 3SAT; running this
reduction and then making a single oracle query to 3SAT (accepting the input if the or-
acle query says “yes,” rejecting the input if “no”) decides the language L in polynomial
time.

(c) Let L be the language of descriptions 〈M,w, q〉 of a (deterministic) Turing machine M ,
an input w to M , and a state q of the Turing machine such that q is reached during
the computation of M on input w. Is L recognizable?

SOLUTION

Yes: using a universal Turing machine, simulate M on input w and accept if the
simulated computation ever reaches q. This algorithm accepts 〈M,w, q〉 iff q is reached
during the computation of M on input w; hence L is recognized by this algorithm.

December 2017 CPSC 421 Name: Page 7 of 7 pages

(d) Let SNEAKY-PSPACE be the descriptions 〈M,w, 1s〉 where M accepts w within space
1s. Prove that if L ∈ PSPACE, then L has a polynomial time reduction to SNEAKY-
PSPACE.

SOLUTION

Since L is in PSPACE, there is a polynomial p(n) and a Turing machine, M , such that
on input w, M decides w within space p(|w|). So given a description of an instance
〈w〉 of L (i.e., a word in the alphabet of L), consider the algorithm that produces
the string 〈M,w, 1p(|w|)〉. This algorithm takes time polynomial in the length of 〈w〉,
since M is fixed and p is a fixed polynomial. Furthermore w ∈ L iff 〈M,w, 1p(|w|)〉
lies in SNEAKY-PSPACE (which in 2019 we called PSPACE-SNEAKY). Hence this
algorithm is a poly time reduction from L to SNEAKY-PSPACE.

(e) If L is in P and L′ is any language, then is {s | st ∈ L for some t ∈ L′} necessarily in
P? [Hint: Consider {0n1n}.]

SOLUTION

The set P is countable (each language in P is decided by some Turing machine, and
there are countably many Turing machines).

Let L = {0n1n}. For any subset N ⊂ N, let

L′ = {01n | n ∈ N}.

Then
S(L,L′) = {s | st ∈ L for some t ∈ L′} = {0n−1 | n ∈ N}.

It follows that any language over the alphabet {0} can occur as a set S(L,L′); hence
the set of languages of the form S(L,L′) is uncountable. Since P is countable, some
language of the form S(L,L′) is not in P.

The End

