CPSC 421/501 101 2020W Final Exam, Part 1

TOTAL POINTS

23.5 / 28

QUESTION 1

1 Question 15 / 8

- 0 pts Correct
- 2 pts Part a incorrect
- 2 pts Part b incorrect
\checkmark - 2 pts Part c incorrect
- 2 pts Part d incorrect
- 1 pts Part a partially correct
\checkmark - 1 pts Part b partially correct
- 1 pts Part c partially correct
- 1 pts Part d partially correct

QUESTION 2

2 Question 29 / 10

- \mathbf{O} pts Correct
$\checkmark-1$ pts No indication of the worktape initial content
- 1 pts No indication of tape alphabet
- 3 pts Incorrect/Non-existent explanation
- 1 pts Missing some rejection conditions in their transition function
- 1 pts transition function does not account for the tape beginning (case were input has length less than 3). [This is lenient given the technical error, but rewards the student for thinking of a different than DFA-style approach.]
- 1 pts Incomplete explanation (description is just \$\$\delta\$\$ in words)
- $\mathbf{1}$ pts Empty string case is not handled
- 0.5 pts Minor mistake in state diagram
- $\mathbf{2}$ pts Treats accept/reject state the same as in DFAs
- 3 pts Missing state diagram (\$\$\delta\$\$)
- 10 pts incorrect

3 Question 39.5 / 10

- 0 pts Correct
- $\mathbf{2}$ pts No argument given to show that L is in NP.
- 0.25 pts To show that L is in NP, you are not iterating through all I; you are non-deterministically writing down I.
- 0.5 pts In proving L is in NP, you have not addressed the necessary condition that one of the m _i is divisible by 4.
- $\mathbf{0 . 2 5}$ pts Argument that L is in NP is vague about what is checked about the subset I of [s].
- $\mathbf{2}$ pts Argument that L is in NP must involve nondeterministic choices or a verifier that gives an I in [s].
- $\mathbf{0}$ pts Argument that L is in NP is vague about the term "certificate" -- it should be a subset of [s].
- 8 pts No reduction given; you have specify a function f of a SUBSET-SET (or some other NPcomplete problem) instance which returns an instance of L.
- 7 pts Your choice of a function f of a SUBSET-SET instance to an instance of L will not work in either of both requirements: (1) w in SUBSET-SUM implies $f(w)$ in L, and (2) w not in SUBSET-SUM implies $f(w)$ not in L.
- 6 pts You need to specify a function f of a SUBSET-SET instance to an instance of L ; it is not clear what is f.
- 4 pts Reduction is going the wrong way: you need to reduce SUBSET-SUM (or some other NP-complete problem) to L, rather than reduce L to some NPcomplete language.
- 4 pts A reduction, f, from, SUBSET-SET to L is given, but the proof that w in SUBSET-SET iff $f(w)$ in L has serious omissions/errors.
- 4 pts Some idea of a reduction, f, from, SUBSET-

SET to L is given, but the proof that w in SUBSET-SET iff $f(w)$ in L has serious omissions.

- 3 pts For f to be a reduction from L1 to L2 you must have that IF w IS NOT IN L1, THEN f(w) IS NOT IN L2. This reduction allows for the possibility that w is not in $L 1$, but that $f(w)$ is nonetheless in $L 2$.
- $\mathbf{1 . 5}$ pts For f to be a reduction from L1 to L2 you must have that IF w IS NOT IN L1, THEN f(w) IS NOT IN L2. You prove only that if w is in L1 then $f(2)$ is in L2, but not conversely.
- $\mathbf{2}$ pts Your reduction doesn't correctly address the condition that one of the m_i with i in I must be divisible by 4.
- $\mathbf{1}$ pts Your reduction doesn't correctly address the condition that one of the m_i in I must be divisible by 4 ; the $m _i$ are supposed to be positive integers, not 0 .
- $\mathbf{2}$ pts The instances of L must have positive integers.
- $\mathbf{0 . 5}$ pts The instances of L must be positive integers, but this isn't the most serious problem.
- 1 pts A subset sum question $x _1, \ldots, x _k, t$ does not have to have t written as u - 2020; you seem to want to set $u=2020+t$.
- 5 pts The argument that w in SUBSET-SUM iff $f(w)$ in L not given.
- 0.5 Point adjustment

This works if you replace $4(\mathrm{t})$ in your construction parts 1 and 3 with $4 B$ where B is large (e.g., the sum of all the n_1,...,n_k). But taking $B=t$ may be too small if, for example, $n _1$ $=\mathrm{t}+2020+4 \mathrm{t} . .$.

